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Abstract6

Multiparty session types (MSTs) provide efficient means to specify and verify asynchronous message-7

passing systems. For a global type, which specifies all interactions between roles in a system,8

the implementability problem asks whether there are local specifications for all roles such that9

their composition is deadlock free and generates precisely the specified executions. Decidability of10

the implementability problem is an open question. We answer it positively for global types with11

generalised choice that allow a sender to send to different receivers and a receiver to receive from12

different senders upon branching. To achieve this, we generalise results from the domain of high-level13

message sequence charts (HMSCs). This connection also allows us to comprehensively investigate14

how HMSC techniques can be adapted to the MST setting. This comprises techniques to make the15

problem algorithmically more tractable as well as a variant of implementability which may open new16

design space for MSTs. Inspired by potential performance benefits, we introduce a generalisation of17

the implementability problem that we, unfortunately, prove to be undecidable.18
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1 Introduction22

Distributed message-passing systems are omnipresent and, therefore, designing and imple-23

menting them correctly is very important. However, this is a very difficult task at the same24

time. In fact, it is well-known that the verification problem is algorithmically undecidable in25

general due to the combination of asynchrony (messages are buffered) and concurrency [15].26

Multiparty Session Type (MST) frameworks provide efficient means to specify and verify27

such distributed message-passing systems. MSTs (and their binary counterpart) are not28

only of theoretical interest but have been implemented for many mainstream programming29

languages [6, 54, 62, 58, 74, 70, 25]. They have also been applied to various other domains30

like operating systems [36], cyber-physical systems [65], timed systems [11], distributed31

algorithms [57], web services [86], and smart contracts [33]. In MST frameworks, global types32

are global specifications, which comprise all interactions between roles in a protocol. From a33

design perspective, it makes sense to start with such a global protocol specification — instead34

of a system with arbitrary communication between roles and a specification to satisfy.35

Let us consider a variant of the well-known two buyer protocol from the MST literature,36

e.g., [75, Fig. 4 (2)]. Two Buyers a and b purchase a sequence of items from Seller s. We37

informally describe the protocol and emphasise the interactions. At the start and after38

every purchase (attempt), Buyer a can decide whether to buy the next item or whether they39

are done. For each item, Buyer a queries its price and the Seller s replies with the price.40

Subsequently, Buyer a decides whether to cancel the purchase process for the current item41

or proposes to split to Buyer b that can accept or reject. In both cases, Buyer a notifies the42

Seller s whether they want to buy the item or not. This protocol can be specified with the43

following global type:44
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Figure 1 Two Buyer Protocol: the finite state machine for the semantics of G2BP on the left, the
first step of projection in the middle, and as HMSC on the right; a transition label a→s :q jointly
specifies a send event a . s!q for Buyer a and a receive event s / a?q for Seller s; styles of states
indicate their kind, e.g., recursion states (dashed lines) while final states have double lines

G2BP := µt. +

{
a→s :query. s→a :price. +

{
a→b :split. (b→a :yes. a→s :buy. t+ b→a :no. a→s :no. t)
a→b :cancel. a→s :no. t

a→s :done. a→b :done. 0
.45

The first term µt binds the recursion variable t which is used at the end of the first two46

lines and allows the protocol to recurse back to this point. Subsequently, + and the curly47

bracket indicate a choice that is taken by Buyer a as it is the sender for the next interaction,48

e.g., a→s :query. For our asynchronous setting, this term jointly specifies the send event49

a . s!query for Buyer a and its corresponding receive event s / a?query for Seller s, which50

may happen with arbitrary delay. The state machine in Figure 1a illustrates its semantics.51

The Implementability Problem for Global Types and the MST Approach52

A global type provides a global view of the intended protocol. However, when implementing53

a protocol in a distributed setting, one needs a local specification for each role. The54

implementability problem for a global type asks whether there are local specifications for all55

roles such that, when complying with their local specifications, their composition never gets56

stuck and exposes the same executions as specified by the global type. This is a challenging57

problem because roles can only partially observe the execution of a system: each role only58

knows the messages it sent and received and, in an asynchronous setting, a role does not59

know when one of its messages will be received by another role.60

In general, one distinguishes between a role in a protocol and the process which implements61

the local specification of a role in a system. We use the local specifications directly as62

implementations so the difference is not essential and we use the term role instead of process.63

Classical MST frameworks employ a partial projection operator with an in-built merge64

operator to solve the implementability problem. For each role, the projection operator takes65

the global type and removes all interactions the role is not involved in. Figure 1a illustrates66

the semantics of G2BP while Figure 1b gives the projection on to Seller s before the merge67

operator is applied — in both, messages are abbreviated with their first letter. It is easy68

to see that this introduces non-determinism, e.g., in q3 and q4, which shall be resolved by69

the merge operator. Most merge operators can resolve the non-determinism in Figure 1b.70

A merge operator checks whether it is safe to merge the states and it might fail so it is71
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a partial operation. For instance, every kind of state, indicated by a state’s style in Figure 1b,72

can only be merged with states of the same kind and states of circular shape. For a role, the73

result of the projection, if defined, is a local type. They act as local specifications and their74

syntax is similar to the one of global types.75

Classical projection operators are a best-effort technique. This yields good (mostly76

linear) worst-case complexity but comes at the price of rejecting implementable global types.77

Intuitively, classical projection operators consider a limited search space for local types. They78

bail out early when encountering difficulties and do not unfold recursion. In addition, most79

MST frameworks do effectively not allow a role to send to different receivers or receive from80

different senders upon branching. This restriction is called directed choice — in contrast to81

generalised choice which allows such patterns. Among the classical projection operators, the82

one by Majumdar et al. [64] is the only to handle global types with generalised choice but83

suffers from the shortcomings of a classical projection approach. We define different merge84

operators from the literature and visually explain their supported features by example. We85

show that the presented classical projection/merge operators fail to project implementable86

variations of the two buyer protocol. This showcases the sources of incompleteness for the87

classical projection approach. For non-classical approaches, we refer to Section 7.88

As a best-effort technique, it is natural to focus on efficiency rather than completeness. The89

work by Castagna et al. [19] is a notable exception even though their notion of completeness [19,90

Def. 4.1] is not as strict as the one considered in this work and only a restricted version of91

their characterisation is algorithmically checkable. In general, it is not known whether the92

implementability problem for global types, with directed or generalised choice, is decidable.93

We answer this open question positively for global types with generalised choice. To this end,94

we relate the implementability problem for global types with the safe realisability problem95

for high-level message sequence charts and generalise results for the latter.96

Lessons Learned from Message Sequence Charts97

The two buyer protocol G2BP can also be specified as high-level message sequence chart98

(HMSC). It is illustrated in Figure 1c. Each block is a basic message sequence chart (BMSC)99

which intuitively corresponds to straight-line code. In each of those, time flows from top to100

bottom and each role is represented by a vertical line. We only give the names in the initial101

block, which is marked by an incoming arrow at the top. An arrow between two role lines102

specifies sending and receiving a message with the corresponding label. The graph structure103

adds branching, which corresponds to choice in global types, and control flow. Top branches104

from the global type are on the left in the HMSC while bottom branches are on the right.105

While research on MSTs and HMSCs has been pursued quite independently, the MST106

literature frequently uses HMSC-like visualisations for global types, e.g., [18, Fig. 1] and [49,107

Figs. 1 and 2]. The first formal connection was recently established by Stutz and Zufferey [77].108

The HMSC approach to the implementability problem, studied as safe realisability, differs109

from the MST approach of checking conditions during the projection. For an HMSC, it is110

known that there is a candidate implementation [3], which implements the HMSC if it is111

implementable. Intuitively, one takes the HMSC and removes all interactions a role is not112

involved in and determinises the result. We generalise their result to infinite executions.1113

Hence, algorithms and conditions center around checking implementability of HMSCs. In114

general, this problem is undecidable [63]. For globally-cooperative HMSCs [39], Lohrey [63]115

proved it to be EXPSPACE-complete. We show that any implementable global type naturally116

belongs to this class of HMSCs1 which is far from trivial. These results give rise to the117

1 For this, we impose a mild assumption: all protocols can (but do not need to) terminate.

CVIT 2016
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following algorithm to check implementability of a global type. One can check whether a118

global type is globally-cooperative (which is equivalent to checking its HMSC encoding). If119

it is not globally-cooperative, it cannot be implementable. If it is globally-cooperative, we120

apply the algorithm by Lohrey [63] to check whether its HMSC encoding is implementable. If121

it is, we use its candidate implementation and know that it generalises to infinite executions.122

While this algorithm shows decidability, the complexity might not be tractable. Based123

on our results, we show how more tractable but still permissive approaches to check imple-124

mentability of HMSCs can be adapted to the MST setting. In addition, we consider payload125

implementability, which allows to add payload to messages of existing interactions and checks126

agreement when the additional payload is ignored. We present a sufficient condition for127

global types that implies payload implementability. These techniques can be used if the128

previous algorithms are not tractable or reject a global type.129

Furthermore, we introduce a generalisation of the implementability problem. A network130

may reorder messages from different senders for the same receiver but the implementability131

problem still requires the receiver to receive them in the specified order. Our generalisation132

allows to consider such reorderings of arrival and can yield performance gains. In addition, it133

also renders global types implementable that are not implementable in the standard setting.134

Unfortunately, we prove it to be undecidable in general.135

Contributions and Outline136

We introduce our MST framework in Section 2 while Section 7 covers details on related work.137

In the other sections, we introduce the necessary concepts to establish our main contributions:138

We give a visual explanation of the classical projection operator with different merge139

operators and exemplify its shortcomings (Section 3).140

We prove decidability of the implementability problem for global types with generalised141

choice (Section 4) — provided that protocols can (but do not need to) terminate.142

We comprehensively investigate how MSC techniques can be applied to the MST setting,143

including algorithmics with better complexity for subclasses as well as an interesting144

variant of the implementability problem (Section 5).145

Lastly, we introduce a new variant of the implementability problem with a more relaxed146

role message ordering, which is closer to the network ordering, and prove it to be147

undecidable in general (Section 6).148

2 Multiparty Session Types149

In this section, we formally introduce our Multiparty Session Type (MST) framework. We150

define the syntax of global and local types and their semantics. Subsequently, we recall the151

implementability problem for global types which asks if there is a deadlock free communicating152

state machine that admits the same language (without additional synchronisation).153

Finite and Infinite Words. Let Σ be an alphabet. We denote the set of finite words over Σ154

by Σ∗ and the set of infinite words by Σω. Their union is denoted by Σ∞. For two strings155

u ∈ Σ∗ and v ∈ Σ∞, we say that u is a prefix of v if there is some w ∈ Σ∞ such that u ·w = v156

and denote this with u ≤ v. For a language L ⊆ Σ∞, we distinguish between the language of157

finite words Lfin := L ∩ Σ∗ and the language of infinite words Linf := L ∩ Σω.158

Message Alphabet. We fix a finite set of messages V and a finite set of roles P, ranged159

over with p, q, r, and s. With Σsync = {p→ q : m | p, q ∈ P and m ∈ V}, we denote160

the set of interactions where sending and receiving a message is specified at the same161

time. For our asynchronous setting, we also define individual send and receive events:162

Σp = {p .q!m, p /q?m | q ∈ P, m ∈ V} for a role p. For both send events p .q!m and receive163
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events p / q?m, the first role is active, i.e., the sender in the first event and the receiver in164

the second one. The union for all roles yields all (asynchronous) events: Σ =
⋃

p∈P Σp. For165

the rest of this work, we fix the set of roles P, the messages V, and both sets Σsync and Σ.166

We may also use the term Σasync for Σ. We define an operator that splits events from Σsync,167

split(p→q :m) := p . q!m. q / p?m, which is lifted to sequences and languages as expected.168

Given a word, we might also project it to all letters of a certain shape. For instance, w⇓p.q!_169

is the subsequence of w with all of its send events where p sends any message to q. If we170

want to select all messages of w, we write V(w).171

Global and Local Types – Syntax172

We give the syntax of global and local types following work by Majumdar et al. [64], Honda173

et al. [48], Hu and Yoshida [50], as well as Scalas and Yoshida [75]. In this work, we174

consider global types as specifications for message-passing concurrency and omit features175

like delegation.176

I Definition 2.1 (Syntax of global types). Global types for MSTs are defined by the grammar:177

178
G ::= 0 |

∑
i∈I

p→qi :mi.Gi | µt.G | t179

The term 0 explicitly represents termination. A term p→ qi :mi indicates an interaction180

where p sends message mi to qi. In our asynchronous semantics, it is split into a send event181

p . qi!mi and a receive event qi / p?mi. In a choice
∑
i∈I p→qi :mi.Gi, the sender p chooses182

the branch. We require choices to be unique, i.e., ∀i, j ∈ I. i 6= j ⇒ qi 6= qj ∨ mi 6= mj.183

If |I| = 1, which means there is no actual choice, we omit the sum operator. The operators184

µt and t allow to encode loops. We require them to be guarded, i.e., there must be at least185

one interaction between the binding µt and the use of the recursion variable t. Without loss186

of generality, all occurrences of recursion variables t are bound and distinct.187

Our definition allows generalised choice as p can send to different receivers upon branching:188 ∑
i∈I p→qi :mi.Gi. In contrast, directed choice requires a sender to send to a single receiver,189

i.e., ∀i, j ∈ I. qi = qj .190

I Example 2.2 (Global types). The two buyer protocol G2BP from the introduction is a191

global type. Instead of
∑

, we use + with curly brackets for readability.192

I Definition 2.3 (Syntax of local types). For a role p, the local types are defined as follows:193

L ::= 0 | ⊕
i∈I

qi!mi.Li | &
i∈I

qi?mi.Li | µt.L | t194

We call ⊕i∈I qi!mi an internal choice while &i∈I qi?mi is an external choice. For both, we195

require the choice to be unique, i.e., ∀i, j ∈ I. i 6= j ⇒ (qi,mi) 6= (qj ,mj). Similarly to global196

types, we may omit ⊕ or & if there is no actual choice and we require recursion to be guarded197

as well as recursion variables to be bound and distinct.198

I Example 2.4 (Local type). For the global type G2BP, a local type for Seller s is199

µt. &
{

a?query. a!price. (a?buy. t & a?no. t)
a?done. 0

.200

Implementing in a Distributed Setting201

Global types can be thought of as global protocol specifications. Thus, a natural question and202

a main concern in MST theory is whether a global type can be implemented in a distributed203

setting. We present communicating state machines, which are built from finite state machines,204

as the standard implementation model.205

CVIT 2016
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I Definition 2.5 (State machines [77]). A state machine A = (Q,∆, δ, q0, F ) is a 5-tuple with206

a finite set of states Q, an alphabet ∆, a transition relation δ ⊆ Q× (∆∪{ε})×Q, an initial207

state q0 ∈ Q from the set of states, and a set of final states F with F ⊆ Q. If (q, a, q′) ∈ δ,208

we also write q a−→ q′. A sequence q0
w0−−→ q1

w1−−→ . . ., with qi ∈ Q and wi ∈ ∆ ∪ {ε} for209

i ≥ 0, such that q0 is the initial state, and for each i ≥ 0, it holds that (qi, wi, qi+1) ∈ δ, is210

called a run in A with its trace w0w1 . . . ∈ ∆∞. A run is maximal if it ends in a final state211

or is infinite. The language L(A) of A is the set of traces of all maximal runs. If Q is finite,212

we say A is a finite state machine (FSM).213

I Definition 2.6 (Communicating state machines [77]). We call A = {{Ap}}p∈P a communi-214

cating state machine (CSM) over P and V if Ap is a finite state machine with alphabet Σp215

for every p ∈ P. The state machine for p is denoted by (Qp,Σp, δp, q0,p, Fp). Intuitively, a216

CSM allows a set of state machines, one for each role in P, to communicate by sending and217

receiving messages. For this, each pair of roles p, q ∈ P, p 6= q, is connected by two directed218

message channels. A transition qp
p.q!m−−−−→ q′p in the state machine of p denotes that p sends219

message m to q if p is in the state qp and changes its local state to q′p. The channel 〈p, q〉220

is appended by message m. For receptions, a transition qq
q/p?m−−−−→ q′q in the state machine221

of q corresponds to q retrieving the message m from the head of the channel when its local222

state is qq which is updated to q′q. The run of a CSM always starts with empty channels and223

each finite state machine is in its respective initial state. A deadlock of {{Ap}}p∈P is the last224

configuration of a finite run for which cannot be extended with →. The formalisation of this225

intuition is standard and can be found in Appendix A.1.226

A global type always specifies send and receive events together. In a CSM execution, there227

may be independent events that can occur between a send and its respective receive event.228

I Example 2.7 (Motivation for indistinguishability relation ∼). Let us consider the following229

global type which is a part of the two buyer protocol: a→ b : cancel. a→ s : no. 0. This is230

one of its traces: a . b!cancel. b / a?cancel. a . s!no. s / a?no. Because the active roles in231

b / a?cancel and a . s!no are different and we do not reorder a receive event in front of its232

respective send event, any CSM that accepts the previous trace also accepts the following233

trace: a . b!cancel. a . s!no. b / a?cancel. s / a?no.234

Majumdar et al. [64] introduced the following relation to capture this phenomenon.235

IDefinition 2.8 (Indistinguishability relation∼ [64]). We define a family of indistinguishability236

relations ∼i ⊆ Σ∗ × Σ∗, for i ≥ 0 as follows. For all w ∈ Σ∗, we have w ∼0 w. For i = 1,237

we define:238

1. If p 6= r, then w.p . q!m.r . s!m′.u ∼1 w.r . s!m′.p . q!m.u.239

2. If q 6= s, then w.q / p?m.s / r?m′.u ∼1 w.s / r?m′.q / p?m.u.240

3. If p 6= s ∧ (p 6= r ∨ q 6= s), then w.p . q!m.s / r?m′.u ∼1 w.s / r?m′.p . q!m.u.241

4. If |w⇓p.q!_| > |w⇓q/p?_|, then w.p . q!m.q / p?m′.u ∼1 w.q / p?m′.p . q!m.u.242

Let w, w′, and w′′ be words s.t. w ∼1 w
′ and w′ ∼i w′′ for some i. Then, w ∼i+1 w

′′. We243

define w ∼ u if w ∼n u for some n. It is straightforward that ∼ is an equivalence relation.244

Define u �∼ v if there is w ∈ Σ∗ such that u.w ∼ v. Observe that u ∼ v iff u �∼ v and245

v �∼ u. For infinite words u, v ∈ Σω, we define u �ω∼ v if for each finite prefix u′ of u, there246

is a finite prefix v′ of v such that u′ �∼ v′. Define u ∼ v iff u �ω∼ v and v �ω∼ u.247

We lift the equivalence relation ∼ on words to languages:248

For a language L, we define C∼(L) =
{
w′ |

∨ w′ ∈ Σ∗ ∧ ∃w ∈ Σ∗. w ∈ L and w′ ∼ w
w′ ∈ Σω ∧ ∃w ∈ Σω. w ∈ L and w′ �ω∼ w

}
.249
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This relation characterises what can be achieved in a distributed setting using CSMs.250

I Lemma 2.9 (L. 21 [64]). Let {{Ap}}p∈P be a CSM. Then, L({{Ap}}p∈P) = C∼(L({{Ap}}p∈P)).251

Global and Local Types – Semantics252

Hence, we define the semantics of global types using the indistinguishability relation ∼.253

I Definition 2.10 (Semantics of global types). We construct a state machine GAut(G) to254

obtain the semantics of a global type G. We index every syntactic subterm of G with a unique255

index to distinguish common syntactic subterms, denoted with [G, k] for syntactic subterm G256

and index k. Without loss of generality, the index for G is 0: [G, 0]. For clarity, we do not257

quantify indices. We define GAut(G) = (QGAut(G),Σsync, δGAut(G), q0,GAut(G), FGAut(G)) where258

QGAut(G) is the set of all indexed syntactic subterms [G, k] of G259

δGAut(G) is the smallest set containing ([
∑
i∈I p→ qi :mi.[Gi, ki], k], p→ qi :mi, [Gi, ki])260

for each i ∈ I, and ([µt.[G′, k2], k1], ε, [G′, k2]) and ([t, k3], ε, [µt.[G′, k2], k1]),261

q0,GAut(G) = [G, 0], and FGAut(G) = {[0, k] | k is an index for subterm 0}262

We consider asynchronous communication so each interaction is split into its send and263

receive event. In addition, we consider CSMs as implementation model for global types264

and, from Lemma 2.9, we know that CSM languages are always closed under the indis-265

tinguishability relation ∼. Thus, we also apply its closure to obtain the semantics of G:266

L(G) := C∼(split(L(GAut(G)).267

The closure C∼(-) corresponds to similar reordering rules in standard MST developments,268

e.g., [49, Def. 3.2 and 5.3].269

I Example 2.11. In Figure 1a (p.2), we presented the FSM for the semantics of GAut(G2BP).270

We give the semantics of a simple global type where p communicates a list of book titles271

to q: µt. (p→q : title. t + p→q :done. 0). Its semantics is the union of two cases: if the list272

of book titles is finite, i.e., C∼((p . q!title. q / p?title)∗. p . q!done. q / p?done); and the one if273

the list is infinite, i.e., C∼((p . q!title. q / p?title)ω). Here, there are only two roles so C∼(-)274

can solely delay receive events (Rule 4 of ∼).275

We distinguish states depending on which subterm they correspond to: binder states with276

their dashed line correspond to a recursion variable binder, while recursion states with their277

dash-dotted lines indicate the use of a recursion variable. We omit ε for transitions from278

recursion to binder states.279

I Definition 2.12 (Semantics for local types). Given a local type L for role p, we index280

syntactic subterms as for the semantics of global types. We construct a state machine281

LAut(L) = (Q,Σp, δ, q0, F ) where282

Q is the set of all indexed syntactic subterms in L,283

δ is the smallest set containing284

([⊕i∈I qi!mi.[Li, ki], k], p . qi!mi, [Li, ki]) and ([&i∈I qi?mi.[Li, ki], k], p / qi?mi, [Li, ki])285

for each i ∈ I, as well as ([µt.[L′, k2], k1], ε, [L′, k2]) and ([t, k3], ε, [µt.[L′, k2], k1]),286

q0 = [L, 0] and F = {[0, k] | k is an index for subterm 0}287

We define the semantics of L as language of this automaton: L(L) = L(LAut(L)).288

Compared to global types, we distinguish two more kinds of states for local types: a send289

state (internal choice) has a diamond shape while a receive state (external choice) has a290

rectangular shape. For states with ε as next action, we keep the circular shape and call them291

neutral states. Figure 1b (p.2) does not represent the state machine for any local type but292

illustrates the use of different styles for different kinds of states.293

CVIT 2016



23:8 Asynchronous MST Implementability is Decidable – Lessons Learned from MSCs

The Implementability Problem for Global Types294

The implementability problem for global types asks whether a global type can be implemented295

in a distributed setting. The projection operator takes the intermediate representation of296

local types as local specifications for roles. We define implementability directly on the297

implementation model of CSMs. Intuitively, every set of local types constitutes a CSM298

through their semantics.299

I Definition 2.13 (Implementability [64]). A global type G is said to be implementable if300

there exists a CSM {{Ap}}p∈P such that301

(deadlock freedom) {{Ap}}p∈P is deadlock free, and302

(protocol fidelity) their languages are the same: L(G) = L({{Ap}}p∈P).303

We say that {{Ap}}p∈P implements G.304

I Remark 2.14 (Progress). Deadlock freedom is sometimes also studied as progress — in the305

sense that a system should never get stuck. However, for infinite executions, a role could306

starve in a non-final state by waiting for a message that is never sent [19, Sec. 3.2]. Castagna307

et al. [19] consider a stronger notion of progress (Def. 3.3: live session) which requires that308

every role could eventually reach a final state. Our results apply to this stronger notion of309

progress as we discuss in Section 4.2.310

3 Projection – From Global to Local Types311

In this section, we define and visually explain a typical approach to the implementability312

problem: the classical projection operator. It tries to translate global types to local types313

and, while doing so, checks if this is safe. Behind the scenes, these checks are conducted314

by a partial merge operator. We consider different variants of the merge operator from the315

literature and exemplify the features they support. We provide visual explanations of the316

classical projection operator with these merge operators on the state machines of global317

types by example. In Appendix B, we give general descriptions but they are not essential to318

explain our observations. Lastly, we summarise the shortcomings of the full merge operator319

and exemplify them with variants of the two buyer protocol from the introduction.320

Classical Projection Operator with Parametric Merge321

I Definition 3.1 (Projection operator). For a merge operator u, the projection of a global322

type G on to a role r ∈ P is a local type that is defined as follows:2 0�r := 0 t�r := t323 (∑
i∈I

p→q :mi.Gi

)
�r :=


⊕i∈I q!mi.(Gi�r) if r = p

&i∈I p?mi.(Gi�r) if r = q
ui∈I Gi�r otherwise

(µt.G)�r :=
{
µt.(G�r) if G�r 6= t

0 otherwise324

Intuitively, a projection operator takes the state machine GAut(G) for a global type G and325

projects each transition label to the respective alphabet of the role, e.g., p→q :m becomes326

q/p?m for role q. This can introduce non-determinism that ought to be resolved by a partial327

merge operator. Several merge operators have been proposed in the literature.328

I Definition 3.2 (Merge Operators). Let L1 and L2 be local types for a role r, and u be a329

merge operator. We define different cases for the result of L1 u L2:330

2 The case split for the recursion binder changes slightly across different definitions. We chose a simple
but also the least restrictive condition. We simply check whether the recursion is vacuous (as µt.t) and
omit it in this case. We require to omit µt if t is never used in the result.
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(1) L1 if L1 = L2331

(2)

 &i∈I\J q?mi.L′1,i &
&i∈I∩J q?mi.(L′1,i u L′2,i) &
&i∈J\I q?mi.L′2,i

 if

{
L1 = &i∈I q?mi.L′1,i,
L2 = &i∈J q?mi.L′2,i

332

(3) µt1.(L′1 u L′2[t2/t1]) if L1 = µt1.L′1 and L2 = µt2.L′2333

Each merge operator is defined by a collection of cases it can apply. If none of the respective334

cases applies, the result of the merge is undefined. The plain merge up [28] can only apply335

Case (1). The semi-full merge us [85] can apply Cases (1) and (2). The full merge uf [75] can336

apply all Cases (1), (2), and (3).337

We will also consider the availability merge operator ua by Majumdar et al. [64] which338

builds on the full merge operator but generalises Case (2) to allow generalised choice. We339

will explain the main differences in Remark 3.12.340

I Remark 3.3 (Correctness of projection). This would be the correctness criterion for projection:341

Let G be some global type and let plain merge up , semi full merge us , full merge uf , or342

availability merge ua be the merge operator u. If G�p is defined for each role p, then the343

CSM {{LAut(G�p)}}p∈P implements G.344

We do not actually prove this so we do not state it as lemma. But why does this hold?345

The implementability condition is the combination of deadlock freedom and protocol fidelity.346

Coppo et al. [28] show that subject reduction entails protocol fidelity and progress while347

progress, in turn, entails deadlock freedom. Subject reduction has been proven for the plain348

merge operator [28, Thm. 1] and the semi-full operator [85, Thm. 1]. Scalas and Yoshida349

pointed out that several versions of classical projection with the full merge are flawed [75,350

Sec. 8.1]. Hence, we have chosen a full merge operator whose correctness follows from the351

correctness of the more general availability merge operator. For the latter, the correctness352

follows from work by Majumdar et al. [64, Thm. 16].353

I Example 3.4 (Projection without merge / Collapsing erasure). In the introduction, we354

considered G2BP and the FSM for its semantics in Figure 1a. We projected (without merge)355

on to Seller s to obtain the FSM in Figure 1b. In general, we also collapse neutral states356

with a single ε-transition and their only successor. We call this collapsing erasure. We only357

need to actually collapse states for the protocol in Figure 4a. In all other illustrations, we358

indicate the interactions the role is not involved with the following notation: [p→q : l] ε.359

On the Structure of GAut(G)360

We now show that the state machine for every local and global type has a certain shape. This361

simplifies the visual explanations of the different merge operators. Intuitively, every such362

state machine has a tree-like structure where backward transitions only happen at leaves of363

the tree, are always labelled with ε, and only lead to ancestors. The FSM in Figure 1a (p.2)364

illustrates this shape where the root of the tree is at the top.365

I Definition 3.5 (Ancestor-recursive, non-merging, intermediate recursion, etc.). Let A =366

(Q,∆, δ, q0, F ) be a finite state machine. We say that A is ancestor-recursive if there is a367

function lvl : Q→ N such that, for every transition q x−→ q′ ∈ δ, one of the two holds:368

(1) lvl(q) > lvl(q′), or369

(2) x = ε and there is a run from the initial state q0 (without going through q) to q′ which370

can be completed to reach q: q0
-−→ . . .

-−→ qn is a run with qn = q′ and q 6= qi for every371

0 ≤ i ≤ n, and the run can be extended to q0
-−→ . . .

-−→ qn
-−→ . . .

-−→ qn+m with qn+m = q.372

Then, the state q′ is called ancestor of q.373
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q0

q′
0

q1

q2 q3

q4

q5 q6

ε

[p→q : l] ε

q→r : l q→r :r

[p→q :r] ε

q→r : l q→r :r

(a) Positive Example for Plain Merge

q0

q1

q2 q3

ε

r / q?l r / q?r

(b) After Plain
Merge

q0

q1

q2

q4

q6

[p→q : l] ε

q→r : l

[p→q :r] ε

q→r :r

(c) Negative example for plain merge

Figure 2 The FSM on the left represents an implementable global type that is accepted by plain
merge. It implicitly shows the FSM after collapsing erasure: every interaction r is not involved in is
given as [p→q : l] ε. The FSM in the middle is the result of the plain merge. The FSM on the
right represents an implementable global type that is rejected by plain merge. It is obtained from
the left one by removing one choice option in each branch of the initial choice.

We call the first (1) kind of transition forward transition while the second (2) kind is a374

backward transition. The state machine A is said to be free from intermediate recursion if375

every state q with more than one outgoing transition, i.e., |{q′ | q -−→ q′ ∈ δ}| > 1, has only376

forward transitions. We say that A is non-merging if every state only has one incoming edge377

with greater level, i.e., for every state q′, {q | q -−→ q′ ∈ δ ∧ lvl(q) > lvl(q′)} ≤ 1. The state378

machine A is dense if, for every q x−→ q′ ∈ δ, the transition label x is ε implies that q has379

only one outgoing transition. Last, the cone of q are all states q′ which are reachable from q380

and have a smaller level than q, i.e., lvl(q) > lvl(q′).381

I Proposition 3.6 (Shape of GAut(G) and LAut(L)). Let G be some global type and L be some382

local type. Then, both GAut(G) and LAut(L) are ancestor-recursive, free from intermediate383

recursion, non-merging, and dense.384

For both, the only forward ε-transitions occur precisely from binder states while backward385

transitions happen from variable states to binder states. The illustrations for our examples386

always have the initial state, which is the state with the greatest level, at the top. This is387

why we use greater and higher as well as smaller and lower interchangeably for levels.388

Features of Different Merge Operators by Example389

In this section, we exemplify which features each of the merge operators does support. We390

present a sequence of implementable global types. Despite, some cannot be handled by391

some (or all) merge operators. If a global type is not projectable using some merge operator,392

we say it is rejected and a negative example for this merge operator. We focus on role r393

when projecting. Thus, rejected mostly means that there is (at least) no projection on to r.394

If a global type is projectable by some merge operator, we call it a positive example. All395

examples strive for minimality and follow the idea that roles decide whether to take a left (l)396

or right (r) branch of a choice.397

I Example 3.7 (Positive example for plain merge). The following global type is implementable:398

µt.+
{

p→q : l. (q→r : l. 0 + q→r :r. t)
p→q :r. (q→r : l. 0 + q→r :r. t)

.399

The state machine for its semantics is given in Figure 2a. After collapsing erasure, there is400

a non-deterministic choice from q′0 leading to q1 and q4 since r is not involved in the initial401

choice. The plain merge operator can resolve this non-determinism since both cones of q1402
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q0

q′
0

q1

q2 q3

q4

q5 q6

ε

[p→q : l] ε

q→r : l q→r :m

[p→q :r] ε

q→r :m q→r :r

(a) Positive example
for semi-full merge

q0

q1|4

q2

q3|5

q6

ε

r / q?l q→
r:m

r / q?r

(b) After semi-full
merge

q0

q1

q2

q4

q6

[p→q : l] ε

p→r : l

[p→q :r] ε

q→r :r

(c) Negative example for full merge

Figure 3 The FSM on the left represents an implementable global type (and implicitly the
collapsing erasure on to r) that is accepted by semi-full merge. The FSM in the middle is the result
of the semi-full merge. The FSM on the right is a negative example for the full merge operator.

and q4 represent the same subterm. Technically, there is an isomorphism between the states403

in both cones which preserves the kind of states as well as the transition labels and the404

backward transitions from isomorphic recursion states lead to the same binder state. The405

result is illustrated in Figure 2b. It is also the FSM of a local type for r which is the result406

of the (syntactic) plain merge: µt.(r / q?l. 0 & r / q?r. t) .407

Our explanation on FSMs allows to check congruence of cones to merge while the definition408

requires syntactic equality. If we swap the order of branches q→r : l and q→r :r in Figure 2a409

on the right, the syntactic merge rejects. Still, because both are semantically the same410

protocol specification, we expect tools to check for such easy fixes.411

I Example 3.8 (Negative example for plain merge). We consider the following simple imple-412

mentable global type where the choice by p is propagated to r: +
{

p→q : l. q→r : l. 0
p→q :r. q→r :r. 0

.413

The corresponding state machine is illustrated in Figure 2c. Here, q0 exhibits non-determinism414

but the plain merge fails because q1 and q4 have different outgoing transition labels.415

Intuitively, the plain merge operator forbids that any, but the two roles involved in a416

choice, can have different behaviour after the choice. It basically forbids propagating a choice.417

The semi-full merge overcomes this shortcoming and can handle the previous example. We418

present a slightly more complex one to showcase the features it supports.419

I Example 3.9 (Positive example for semi-full merge). Let us consider the following imple-420

mentable global type: µt. +
{

p→q : l. (q→r : l. 0 + q→r :m. 0)
p→q :r. (q→r :m. 0 + q→r :r. t)

. The state machine for its semantics421

is illustrated in Figure 3a. After applying collapsing erasure, there is a non-deterministic422

choice from q0 leading to q1 and q4 since r is not involved in the initial choice, We apply423

the semi-full merge for both states. Both are receive states so Case (2) applies. First, we424

observe that r / q?l and r / q?r are unique to one of the two states so both transitions,425

with the cones of the states they lead to, can be kept. Second, there is r / q?m which426

is possible in both states. We recursively apply the semi-full merge and, with Case (1),427

observe that the result q3,5 is simply a final state. Overall, we obtain the state machine in428

Figure 3b which is equivalent to the result of the syntactic projection with semi-full merge:429

µt.(r / q?l. 0 + r / q?m. 0 + r / q?r. t) .430

I Example 3.10 (Negative example for semi-full merge and positive example for full merge).431

The semi-full merge operator rejects the following implementable global type:432
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q0

q1

q′
1

q2

q′
2

q3

q′
3

q4

q′
4

q5

q′
5

q6

q′
6

p→q : l

ε

q→r : l q→r :m

p→q :r

ε

q→r :m q→r :r

q→p : l q→p :m q→p :m q→p :r

(a) Negative example for semi-full merge
and positive example for full merge

q0

q1

q′
1

q′′
2 q′′

3

q4

q′
4

q′′
5 q′′

6

ε

ε

r / q?l r / q?m

ε

ε

r / q?m r / q?r

(b) After collapsing erasure

q1|4

q′
1|4

q′′
2

q′′
3|5

q′′
6

ε

r / q?l r
/

q?
m

r / q?r

(c) After Full Merge

Figure 4 The FSM on the left represents an implementable global type that is rejected by the
semi-full merge. It is accepted by the full merge: collapsing erasure yields the FSM in the middle
and applying the full merge the FSM on the right.

+
{

p→q : l. µt1. (q→r : l. q→p : l. t1 + q→r :m. q→p :m. 0)
p→q :r. µt2. (q→r :m. q→p :m. 0 + q→r :r. q→p :r. t2)

.433

Its FSM and the FSM after collapsing erasure is given in Figures 4a and 4b. Intuitively, it434

would need to recursively merge the parts after both recursion binders in order to merge435

the branches with receive event r / q?m but it cannot do so. The full merge can handle this436

global type. It can descend beyond q1 and q4 and is able to merge q′1 and q′4. To obtain q′′3|5,437

it applies Case (1) while q′1|4 is only feasible with Case (2). The result is embedded into the438

recursive structure to obtain the FSM in Figure 4c. It is equivalent to the (syntactic) result439

which renames the recursion variable for one branch: µt1. (r / q?l. t1 & r / q?m. 0 & r / q?r. t1).440

I Example 3.11 (Negative example for full merge). We consider a simple implementable441

global type where p propagates its decision to r in the top branch while q propagates it in the442

bottom branch: +
{

p→q : l. p→r : l. 0
p→q :r. q→r :r. 0

. It is illustrated in Figure 3c. This cannot be projected443

on to r by the full merge operator for which all receive events need to have the same sender.444

I Remark 3.12 (On generalised choice). Majumdar et al. [64] proposed a classical projection445

operator that allows to overcome this shortcoming. It can project the previous example.446

In general, allowing to receive from different senders has subtle consequences. Intuitively,447

messages from different senders could overtake each other in a distributed setting and one448

cannot rely on the FIFO order provided by the channel of a single sender. Thus, they employ449

a message availability analysis to ensure that there cannot be any confusion about which450

branch shall be taken. Except for the possibility to merge cases where a receiver receives from451

multiple senders, their merge operator suffers from the same shortcomings as any classical452

projection operator. We refrain from presenting their merge operator here but refer to their453

work for details on the availability merge operator ua .454

Case (2) allows to descend for common receive events. One could also add a similar case455

for send events where one recursively applies the merge operator (but, in most cases, the set456

of send events ought to be the same). Such a case might render some global types projectable.457

However, it does not give any additional insights into the concept of the classical projection458

operator and its potential merge operators. Of course, one could consider the different cases459

in all combinations. Again, this does not really give insights which is why we deliberately460

chose this incremental style that concisely shows which cases support which features.461
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Shortcomings of Classical Projection/Merge Operators462

In this section, we present slight variations of the two buyer protocol that are implementable463

but rejected by all of the presented projection/merge operators.464

I Example 3.13. We obtain an implementable variant by omitting both message interactions465

a→s :no with which Buyer a notifies Seller s that they will not buy the item:466

µt. +

{
a→s :query. s→a :price.

(
a→b :split. (b→a :yes. a→s :buy. t+ b→a :no. t) + a→b :cancel. t

)
a→s :done. a→b :done. 0

.467

This global type cannot be projected on to Seller s. The merge operator would need to468

merge a recursion variable with an external choice. Visually, the merge operator does not469

allow to unfold the variable t and try to merge again. However, there is a local type:470

µt1. &
{

s / a?query. µt2. s . a!price. (s / a?buy. t1 & s / a?query. t2 & s / a?done. 0)
s / a?done. 0

.471

The local type has two recursion variable binders while the global type only has one. Our472

explanations showed that classical projection operators can never yield such a structural473

change: the merge operator can only merge states but not introduce new ones or introduce474

new backward transitions.475

I Example 3.14 (Two Buyer Protocol with Subscription). In this variant, Buyer a first decides476

whether to subscribe to a yearly discount offer or not — before purchasing the sequence of477

items — and notifies Buyer b if it does so: G2BPWS := +
{

a→s : login.G2BP
a→s :subscribe. a→b :subscribed.G2BP

.478

The merge operator needs to merge a recursion variable binder µt with an external choice479

b / a?subscribed. Because Buyer a only sends subscribed at the beginning of the protocol,480

it is safe to introduce one recursion variable earlier to obtain the following local type for481

Buyer b. (In fact, we could also remove µt2 and substitute t2 by t1 for the same reason.)482

µt1. &


b / a?split. (b . a!yes. t1⊕ b . a!no. t1)
b / a?cancel. t1
b / a?done. 0
b / a?subscribed. µt2.

(
b / a?split. (b . a!yes. t2⊕ b . a!no. t2) & b / a?cancel. t2 & b / a?done. 0

) .483

Similarly, the classical projection operator cannot yield any local type which needs to484

distinguish semantic properties to disambiguate a choice, e.g., counting modulo a constant.485

Scalas and Yoshida [75] identified another shortcoming: most classical projection operators486

require all branches of a loop to contain the same set of active roles. Thus, they cannot487

project the following global type. It is implementable and if it was projectable, the result488

would be equivalent to the local types given in their example [75, Fig. 4 (2)].489

I Example 3.15 (Two Buyer Protocol with Inner Recursion). This variant allows to recursively490

negotiate how to split the price (and omits the outer recursion):491

G2BPIR := a→s :query. s→a :price. µt. +
{

a→b :split. (b→a :yes. a→s :buy. 0 + b→a :no. t)
a→b :cancel. a→s :no. 0

.492

These shortcomings have been addressed by some non-classical approaches. For example,493

Scalas and Yoshida [75] employ model checking while Dagnino et al. [31] characterise494

implementable global types with an undecidable well-formedness condition and give a sound495

algorithmically checkable approximation. It is not known whether the implementability496

problem for global types, neither with directed or generalised choice, is decidable. We answer497

this question positively for the more general case of generalised choice.498

4 Implementability for Global Types from MSTs is Decidable499

In this section, we show that the implementability problem for global types with generalised500

choice is decidable. For this, we use results from the domain of message sequence charts.501
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We first introduce high-level message sequence charts (HMSCs) and recall an encoding of502

global types to HMSCs. In general, implementability of HMSCs is undecidable but we503

prove that global types belong, when encoded as HMSCs, to a class of HMSCs for which504

implementability is decidable.505

4.1 High-level Message Sequence Charts506

Our definitions of (high-level) message sequence charts follow work by Genest et al. [38] and507

Stutz and Zufferey [77]. If reasonable, we adapt terminology to the MST setting.508

I Definition 4.1 (Message Sequence Charts). A message sequence chart (MSC) is a 5-tuple509

M = (N, p, f, l, (≤p)p∈P) where510

N is a set of send (S) and receive (R) event nodes such
that N = S ]R (where ] denotes disjoint union),
p : N → P maps each event node to the role acting on it,
f : S → R is an injective function linking
corresponding send and receive event nodes,
l : N → Σ labels every event node with an event, and
(≤p)p∈P is a family of total orders for the
event nodes of each role: ≤p ⊆ p−1(p)× p−1(p).

p ▷ q !m
q ◁ p ?m

p q

Figure 5 Highlighting
the elements of a MSC:
(N, p, f, l, (≤p)p∈P)

511

An MSC M induces a partial order ≤M on N that is defined co-inductively:512

e ≤p e
′

e ≤M e
′ proc s ∈ S

s ≤M f(s)
snd-rcv

e ≤M e
refl

e ≤M e
′

e
′ ≤M e

′′

e ≤M e
′′ trans

The labelling function l respects the function f : for every send event node e, we have that513

l(e) = p(e) . p(f(e))!m and l(f(e)) = p(f(e)) / p(e)?m for some m ∈ V.514

All MSCs in our work respect FIFO, i.e., there are no p and q such that there are515

e1, e2 ∈ p−1(p) with e1 6= e2, l(e1) = l(e2), e1 ≤p e2 and f(e2) ≤q f(e1) (also called516

degenerate) and for every pair of roles p, q, and for every two event nodes e1 ≤M e2 with517

l(ei) = p . q!_ for i ∈ {1, 2}, it holds that V(wp) = V(f(wp)) where wp is the (unique)518

linearisation of p−1(p). A basic MSC (BMSC) has a finite number of nodes N andM denotes519

the set of all BMSCs. When unambiguous, we omit the index M for ≤M and write ≤. We520

define � as expected. The language L(M) of an MSC M collects all words l(w) for which w521

is a linearisation of N that is compliant with ≤M .522

If one thinks of a BMSC as straight-line code, a high-level message sequence chart adds523

control flow. It embeds BMSCs into a graph structure which allows for choice and recursion.524

I Definition 4.2 (High-level Message Sequence Charts [77]). A high-level message sequence525

chart (HMSC) is a 5-tuple (V,E, vI, V T, µ) where V is a finite set of vertices, E ⊆ V × V526

is a set of directed edges, vI ∈ V is an initial vertex, V T ⊆ V is a set of terminal vertices,527

and µ : V →M is a function mapping every vertex to a BMSC. A path in an HMSC is a528

sequence of vertices v1, . . . from V that is connected by edges, i.e., (vi, vi+1) ∈ E for every i.529

A path is maximal if it is infinite or ends in a vertex from V T .530

Intuitively, the language of an HMSC is the union of all languages of the finite and infinite531

MSCs generated from maximal paths in the HMSC and is formally defined in Appendix C.1.532

Like global types, an HMSC specifies a protocol. The implementability question was also533

posed for HMSCs and studied as safe realisability. If the CSM is not required to be deadlock534

free, it is called weak realisability.535

I Definition 4.3 (Safe realisability of HMSCs [4]). An HMSC H is said to be safely realisable536

if there exists a deadlock free CSM {{Ap}}p∈P such that L(H) = L({{Ap}}p∈P).537
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Encoding Global Types from MSTs as HMSCs538

Stutz and Zufferey [77] provide a formal connection from global types to HMSCs. We recall539

their encoding and main correctness result.540

I Definition 4.4 (Encoding global types as HMSCs [77]). In the translation, the following541

notation is used: M∅ is the empty BMSC (N = ∅) and M(p→q :m) is the BMSC with two542

event nodes: e1, e2 such that f(e1) = e2, l(e1) = p . q!m, and l(e2) = q / p?m .543

Let G be a global type, we construct an HMSC H(G) = (V,E, vI , V T , µ) with544

V = {G′ | G′ is a subterm of G} ∪
{(
∑

i∈I
p→qi :mi.Gi, j) |

∑
i∈I

p→qi :mi.Gi occurs in G ∧ j ∈ I}

E = {(µt.G′, G′) | µt.G′ occurs in G} ∪ {(t, µt.G′) | t, µt.G′ occurs in G}
∪ {(

∑
i∈I

p→qi :mi.Gi, (
∑

i∈I
p→qi :mi.Gi, j)) | (

∑
i∈I

p→qi :mi.Gi, j) ∈ V }
∪ {((

∑
i∈I

p→qi :mi.Gi, j), Gj) | (
∑

i∈I
p→qi :mi.Gi, j) ∈ V }

vI = G V T = {0} µ(v) =

{
M(p→qi :mj) if v = (

∑
i∈I

p→qi :mi.Gi}, j)
M∅ otherwise

545

We adapt the correctness result to our definitions. In particular, our semantics of G use546

the closure operator C∼(-) while they explicitly distinguish between a type and execution547

language. We also omit the closure operator on the right-hand side because HMSCs are548

closed with regard to this operator [77, Lm. 5].549

I Theorem 4.5. Let G be a global type. Then, the following holds: L(G) = L(H(G)).550

4.2 Implementability is Decidable551

I Assumption (0-Reachable). We introduce a mild assumption for global types. We say a552

global type G is 0-reachable if every prefix of a word in its language can be completed to a553

finite word. Equivalently, we require that the vertex 0 is reachable from any vertex in H(G).3554

Intuitively, this solely rules out global types that have loops without exit (cf. Example 4.19).555

The MSC approach to safe realisability for HMSCs is different from the classical projection556

approach to implementability. Given an HMSC, there is a canonical candidate implementation557

which always implements the HMSC if an implementation exists [3, Thm. 13]. Therefore,558

approaches center around checking safe realisability of HMSC languages and establishing559

conditions on HMSCs that entail safe realisability.560

I Definition 4.6 (Canonical candidate implementation [3]). Given an HMSC H and a role p,561

let A′p = (Q′,Σp, δ
′, q′0, F

′) be a state machine with Q′ = {qw | w ∈ pref(L(H)⇓Σp
)},562

F ′ = {qw | w ∈ Lfin(H)⇓Σp
)}, and δ′(qw, x, qwx) for x ∈ Σasync. The resulting state563

machine A′p is not necessarily finite so A′p is determinised and minimised which yields the564

FSM Ap. We call {{Ap}}p∈P the canonical candidate implementation of H.565

Intuitively, the intermediate state machine A′p constitutes a tree whose maximal finite566

paths give L(H)⇓Σp
∩ Σ∗p . This set can be infinite and, thus, the construction might not be567

effective. We give an effective construction of a deterministic FSM for the same language568

which was very briefly hinted at by Alur et al. [4, Proof of Thm. 3].569

3 An equivalent conditions is common in the HMSC domain [39, Sec. 2] [77, Sec. 4].
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I Definition 4.7 (Projection by Erasure). Let p be a role and M = (N, p, f, l, (≤p)p∈P) be570

an MSC. We denote the set of nodes of p with Np := {n | p(n) = p} and define a two-ary571

next-relation on Np: next(n1, n2) iff n1 � n2 and there is no n′ with n1 � n′ � n2. We572

define the projection by erasure of M on to p: M⇓p = (QM ,Σp, δM , qM,0, {qM,f}) with573

QM = {qn | n ∈ Np} ] {qM,0} ] {qM,f} and574

δM = {qn1
l(n1)
−−−−→ qn2 | next(n1, n2)} ] {qn2

l(n2)
−−−−→ qM,f | ∀n1. n1 ≤ n2} ] {qM,0

ε−→ qn1 | ∀n2. n1 ≤ n2}575576

where ] denotes disjoint union. Let H = (V,E, vI, V T, µ) be an HMSC. We construct the577

projection by erasure for every vertex and identify them with the vertex, e.g., Qv instead578

of Qµ(v). We construct an auxiliary FSM (Q′H ,Σp, δ
′
H , q

′
H,0, F

′
H) with Q′H =

⊎
v∈V Qv,579

δ′H =
⊎
v∈V δv ] {qv1,f

ε−→ qv2,0 | (v1, v2) ∈ E}, q′H,0 = qvI,0, and F ′H =
⊎
v∈V F qv,f . We580

determinise and minimise (Q′H ,Σp, δ
′
H , q

′
H,0, F

′
H) to obtain H⇓p := (QH ,Σp, δH , qH,0, FH)581

which we define to be the projection by erasure of H on to p. The CSM formed from the582

projections by erasure {{H⇓p}}p∈P is called erasure candidate implementation.583

I Lemma 4.8 (Correctness of Projection by Erasure). Let H be an HMSC, p be a role, and H⇓p584

be its projection by erasure. Then, the following language equality holds: L(H⇓p) = L(H)⇓Σp
.585

The proof is straightforward and can be found in Appendix C.2. From this result and586

the construction of the canonical candidate implementation, it follows that the projection by587

erasure admits the same finite language.588

I Corollary 4.9. Let H be an HMSC, p be a role, H⇓p be its projection by erasure, and Ap589

be the canonical candidate implementation. Then, it holds that Lfin(H⇓p) = Lfin(Ap).590

The projection by erasure can be computed effectively and is also deterministic. Thus, we591

use it in place of the canonical candidate implementation. Given a global type, the erasure592

candidate implementation for its HMSC encoding implements it if it is implementable.593

I Theorem 4.10. Let G be a global type and {{H(G)⇓p}}p∈P be its erasure candidate594

implementation. If Lfin(G) is implementable4, then {{H(G)⇓p}}p∈P is deadlock free and595

Lfin({{H(G)⇓p}}p∈P) = Lfin(G).596

The proof can be found in Appendix C.3. This result does only account for finite languages597

so we extend it for infinite sequences.598

I Lemma 4.11 (Erasure candidate implementation generalises to infinite language if imple-599

mentable). Let G be a 0-reachable global type and {{H(G)⇓p}}p∈P be its erasure candidate600

implementation. If G is implementable, then Linf({{H(G)⇓p}}p∈P) = Linf(G).601

The proof can be found in Appendix C.4.602

So far, we have shown that, if G is implementable, its erasure candidate implementation603

implements it. For this, we actually took the detour and showed the same for H(G), the604

HMSC encoding of G. For HMSCs, this is undecidable in general [63]. We show that, because605

of their conditions on choice, global types fall into the class of globally-cooperative HMSCs606

for which implementability is decidable.607

I Definition 4.12 (Communication graph [39]). Let M = (N, p, f, l, (≤p)p∈P) be an MSC.608

The communication graph of M is a directed graph with node p for every role p that sends609

or receives a message in M and edges p→ q if M contains a message from p to q, i.e., there610

is e ∈ N such that p(e) = p and p(f(e)) = q.611

4 Implementability is lifted to languages as expected.
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(a) Implementable HMSC Hing that is not
globally cooperative

q0,p

q1,p

q2,p

p . q!m

p . q!m

p . q!m

q0,q

q1,q

q2,q

q / p?m

q / p?m

q / p?m

q0,r

q1,r

r . s!m

r . s!m

q0,s

q1,s

s / r?m

s / r?m

(b) An implementation for Hing

Figure 6 An implementable HMSC which is not globally-cooperative with its implementation

It is important that the communication graph of M does not have a node for every role612

but only the active ones, i.e., that send or receive in M .613

I Definition 4.13 (Globally-cooperative HMSCs [39]). An HMSC H = (V,E, vI , V T , µ) is614

called globally-cooperative if for every loop, i.e., v1, . . . , vn with (vi, vi+1) ∈ E for every615

1 ≤ i < n and (vn, v1) ∈ E, the communication graph of µ(v1) . . . µ(vn) is weakly connected.5616

We can check this directly on for a global type G. It is straightforward to define a communi-617

cation graph for words from Σ∗sync. We check it on GAut(G): for each binder state, we check618

the communication graph for the shortest trace to every corresponding recursion state.619

I Theorem 4.14 (Thm. 3.7 [63]). Let H be a globally-cooperative HMSC. Restricted to its620

finite language Lfin(H), safe realisability is EXPSPACE-complete.621

I Lemma 4.15. Let G be an implementable 0-reachable global type. Then, its HMSC622

encoding H(G) is globally-cooperative.623

The proof can be found in Appendix C.5 and is far from trivial. We explain the main624

intuition for the proof with the following example where we exemplify why the same result625

does not hold for HMSCs in general.626

I Example 4.16 (Implementable HMSC that is not globally cooperative). Let us consider627

the HMSC Hing in Figure 6a. It is implementable but not globally-cooperative and not628

representable with a global type. This protocol consists of three loops. In the first one,629

p sends a message m to q while r sends a message m to s. This is the loop for which the630

communication graph is not weakly connected. In the second one, only the interaction631

between p and q is specified, while, in the third one, it is only the one between r and s. For632

a protocol, which consists of the first and third loop only, an implementation can always633

expose an execution with more interactions between p and q than the ones between r634

and s due to the lack of synchronisation. Here, the additional second loop can make up for635

such executions so any execution has a path that specifies it. Thus, this protocol can be636

implemented with the CSM built from the FSMs illustrated in Figure 6b. In Appendix C.6,637

we explain in detail why there is a path in Hing for any trace of the CSM and how to modify638

the example not to have final states with outgoing transitions.639

5 Weakly connected means that, when considering every edge not to be directed, every node is connected
with every other node.
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I Theorem 4.17. Let G be a 0-reachable global type with generalised choice. Checking640

implementability of G is in EXPSPACE.641

Proof. We construct H(G) from G and check if it is globally-cooperative. For this, we apply642

the coNP-algorithm by Genest et al. [39] which is based on guessing a subgraph and checking643

its communication graph. If H(G) is not globally cooperative, we know from Lemma 4.15644

that G is not implementable. If H(G) is globally cooperative, we check safe realisability for645

H(G). By Theorem 4.14, this is in EXPSPACE. If H(G) is not safely realisable, it trivially646

follows that G is not implementable. If H(G) is safely realisable, G is implementable by the647

erasure candidate implementation with Theorem 4.10 and Lemma 4.11. J648

With this, the implementability problem for global types with generalised choice is decidable.649

I Corollary 4.18. Let G be a 0-reachable global type with generalised choice. It is decidable650

whether G is implementable and there is an algorithm to obtain its implementation.651

Our results also apply to the stronger notion of progress (Remark 2.14). This also652

entails that any sent message can eventually be received in an implementation — a property653

sometimes called eventual reception [61, Def. 4]. This notion only asks for the possibility but654

we can ensure that no role starves in a non-final state during an infinite execution in two655

ways. First, we can impose a (strong) fairness assumption — as imposed by Castagna et656

al. [19]. Second, we can require that every loop branch contains at least all roles that occur657

in interactions of any path with which the protocol can finish.658

The Odd Case of Infinite Loops Without Exits In practice, it is reasonable to assume a659

mechanism to terminate a protocol for maintenance for instance, justifying the 0-Reachable-660

Assumption (p.15). In theory, one can think of protocols for which it does not hold. They661

would simply recurse indefinitely and can never terminate. This allows interesting behaviour662

like two sets of roles that do not interact with each other as the following example shows.663

I Example 4.19. Consider the following global type: G = µt. p → q : m. r → s : m. t.664

This global type is basically the protocol which consists only of the first loop of Hing from665

Example 4.16. It describes an infinite execution with two pairs of roles that send and receive666

messages independently. While this can be implemented for an infinite setting, such a loop667

could never be exited since the set of roles would need to synchronise on the number of times668

the loop was taken to satisfy language equality.669

Expressiveness of Local Types Local types, like their global counterparts, have a distinct670

expression for termination: 0. Thus, if one considers the FSM of a local type, every final671

state has no outgoing transitions. Our proposed algorithm might produce state machines for672

which this is not true. However, the language of such a state machine cannot be represented673

as local type. Both, our construction and local types are deterministic. Thus, if there is a674

final state with an outgoing transition, there cannot be any state machine that only has final675

states without outgoing transitions.676

In addition, the syntax prescribes the structure of the state machines similarly as for677

global types: state machines for local types are also ancestor-recursive, free of intermediate678

recursion, non-merging and dense (Proposition 3.6). We believe that this is rather a result of679

the classical projection operator than a design choice. For our algorithm, this is not the case.680

This raises two obvious directions for future work. On the one hand, it might be feasible681

to find rewriting techniques that take arbitrary state machines without final states with682
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outgoing transitions and transform them in a way such that they correspond to a local type.683

A naive approach to establish ancestor-recursiveness will most likely involve copying parts of684

the state machine. Such a rewriting would allow to re-use existing work, e.g., on sub-typing,685

which intuitively attempts to give freedom to implementations while preserving the soundness686

properties, On the other hand, one could also waive the syntactic restrictions and study687

sub-typing for this potentially more general class of local specifications.688

On Lower Bounds for Implementability For general globally-cooperative HMSCs, i.e., that689

are not necessary the encoding of a global type, safe realisability is EXPSPACE-hard [63].690

This hardness result does not carry over for H(G) of a global type G. The construction691

exploits that HMSCs do not impose any restrictions on choice. Global types, however, require692

every branch to be chosen by a single sender.693

5 MSC Techniques for MST Verification694

In the previous section, we generalised results from the MSC literature to show decidability of695

the implementability problem for global types from MSTs. However, the resulting algorithm696

suffers from high complexity. This is also true for the original problem of safe realisability of697

HMSCs. In fact, the problem is undecidable for general HMSCs. Besides globally-cooperative698

HMSCs, further restrictions of HMSCs have been studied to obtain algorithms with better699

complexity for global types. The results from the previous section, in particular Theorem 4.10700

and Lemma 4.11, make most of these results applicable to the MST setting. One solely needs701

to check that the global type (or its HMSC encoding) belongs to the respective class. First, we702

transfer the algorithms for I-closed HMSCs, which requires an HMSC not to exhibit certain703

anti-patterns of communication, to global types. Second, we explain approaches for HMSCs704

that introduced the idea of choice to HMSCs and a characterisation of implementable MSC705

languages. These can be a reasonable starting point for the design of complete algorithms for706

the implementability problem with better worst-case complexity. Third, we present a variant707

of the implementability problem. It can make unimplementable global types implementable708

without changing a protocol’s structure but also help if the complexity of the previous709

algorithms is intractable. From now on, we may use the term implementability for HMSCs710

instead of safe realisability.711

I-closed Global Types712

For globally-cooperative HMSCs, the implementability problem is EXPSPACE-complete.713

The membership in EXPSPACE was shown by reducing the problem to implementability of714

I-closed HMSCs [63, Thm. 3.7]. These require the language of an HMSC to be closed with715

regard to an independence relation I, where, intuitively, two interactions are independent if716

there is no role which is involved in both. Implementability for I-closed HMSCs is PSPACE-717

complete [63, Thm. 3.6]. As for the EXPSPACE-hardness for globally-cooperative HMSCs,718

the PSPACE-hardness exploits features that cannot be modelled with global types and there719

might be algorithms with better worst-case complexity.720

We adapt the definitions [63] to the MST setting. These consider atomic BMSCs, which721

are BMSCs that cannot be split further. With the HMSC encoding for global types, it is722

straightforward that atomic BMSCs correspond to individual interactions for global types.723

Thus, we define the independence relation I on the alphabet Σsync.724

I Definition 5.1 (Independence relation I). We define the independence relation I on Σsync:725
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I := {(p→q :m, r→s :m′) | {p, q} ∩ {r, s} 6= ∅)}726

We lift this to an equivalence relation ≡I on words as its transitive and reflexive closure:727

≡I := {(u. x1. x2. w, u. x2. x1. w) | u,w ∈ Σ∗sync and (x1, x2) ∈ I}728

We define its closure for language L ⊆ Σ∗sync: C≡I (L) := {u ∈ Σ∗sync | ∃w ∈ L with u ≡I w}.729

I Definition 5.2 (I-closedness for global types). Let G be a global type G. We say G is730

I-closed if Lfin(GAut(G)) = C≡I (Lfin(GAut(G))).731

Note that I-closedness is defined on the state machine GAut(G) of G with alphabet Σsync732

and not on its semantics L(G) with alphabet Σasync.733

I Example 5.3. The global type G2BP is I-closed. Buyer a is involved in every interaction.734

Thus, for every consecutive interactions, there is a role that is involved in both.735

I Algorithm 1 (Checking if G is I-closed). Let G be a global type G. We construct the state736

machine GAut(G). We need to check every consecutive occurrence of elements from Σsync737

for words from L(GAut(G)). For binder states, incoming and outgoing transition labels are738

always ε. This is why we slightly modify the state machine but preserve its language. We739

remove all variable states and rebend their only incoming transition to the state their only740

outgoing transition leads to. In addition, we merge binder states with their only successor.741

For every state q of this modified state machine, we consider the labels x, y ∈ Σsync of every742

combination of incoming and outgoing transition of q. We check if x ≡I y. If this is true for743

all x and y, we return true. If not, we return false.744

I Lemma 5.4. A global type G is I-closed iff Algorithm 1 returns true.745

The proof can be found in Appendix D. This shows that the presented algorithm can746

be used to check I-closedness. The algorithm considers every state and all combinations of747

transitions leading to and from it.748

I Proposition 5.5. For global type G, checking I-closedness of G is in O(|G|2).749

The tree-like shape of GAut(G) might suggest that this check can be done in linear time.750

However, the following example shows that recursion can lead to a quadratic number of checks.751

I Example 5.6. Consider the following global type for some n:752

µt. +


p→q0 :m0. q0→r0 :m0. r0→s0 :m0. 0
p→q1 :m1. q1→r1 :m1. r1→s1 :m1. t

...
p→qn :mn. qn→rn :mn. rn→sn :mn. t

.753

It is obvious that (p→qi :mi, qi→ri :mi) /∈ I and (qi→ri :mi, ri→si :mi) /∈ I for every i.754

Because of the recursion, we need to check if (ri→ si :mi, p→ qj :mj) is in I for every755

0 6= i 6= j. This might lead to a quadratic number of checks.756

If a global type G is I-closed, we can apply the respective results for its HMSC H(G)757

and the resulting CSM is also an implementation for G. If not, we need to consider other758

approaches — where the last resort are the algorithms for globally-cooperative HMSCs.759

There are global types that are not I-closed but implementable.760

I Example 5.7. The following implementable global type is not I-closed: p→q :m. r→s :m. 0 .761
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Detecting Non-local Choice in HMSCs762

For HMSCs, there is no restriction on branching. Similar to choice for global types, the idea763

of imposing restrictions on choice was studied for HMSCs [10, 68, 66, 44, 39]. We refer to764

Section 7 for an overview. Here, we focus on results that seem most promising for developing765

algorithms to check implementability of global types with better worst-case complexity. The766

work by Dan et al. [32] centers around the idea of non-local choice. Intuitively, non-local choice767

yields scenarios which makes it impossible to implement the language. In fact, if a language is768

not implementable, there is some non-local choice. Thus, checking implementability amounts769

to checking non-local choice freedom. For this definition, they showed insufficiency of Baker’s770

condition [7] and reformulated the closure conditions for safe realisability by Alur et al. [3].771

In particular, they provide a definition which is based on projected words of a language in772

contrast to explicit choice. While it is straightforward to check their definition for finite773

collections of k BMSCs with n events in O(k2 · |P|+ n · |P|), it is unclear how to check their774

condition for languages with infinitely many elements. The design of such a check is far from775

trivial as their definition does not give any insight about local behaviour and their algorithm776

heavily relies on the finite nature of finite collections of BMSCs. Still, we believe that the777

observations based on the closure conditions by Alur et al. [3], which provide a sound and778

complete characterisation of implementable languages, can be key to more efficient complete779

algorithms for the implementability problem for global types from MSTs.780

Payload Implementability781

A deadlock free CSM implements a global type if their languages are precisely the same. In782

the HMSC domain, a variant of the implementability problem has been studied. Intuitively,783

it allows to add fresh data to the payload of an existing message and protocol fidelity allows784

to omit the additional payload data. This allows to add synchronisation messages to existing785

interactions and can make unimplementable global types implementable without changing786

the structure of the protocol. It can also be used if a global type is rejected by projection787

and the run time of the previous algorithms is not acceptable.788

I Definition 5.8 (Payload implementability). Let L be a language with message alphabet V1.789

We say that L is payload implementable if there is a message alphabet V2 for a deadlock free790

CSM {{Ap}}p∈P with Ap over {p . q!m, p / q?m | q ∈ P, m ∈ V1 × V2} such that its language791

is the same when projecting on to the message alphabet V1, i.e., C∼(L) = L({{Ap}}p∈P)⇓V1 ,792

where (p . q!(m1,m2))⇓V1
:= p . q!m1 and (q / p?(m1,m2))⇓V1

:= q / p?m1 and is lifted to793

words and languages as expected.794

Genest et al. [39] identified a class of HMSCs which is always payload implementable795

with a deadlock free CSM of linear size.796

I Definition 5.9 (Local HMSCs [39]). Let H = (V,E, vI, V T, µ) be an HMSC. We say that797

H is local if µ(vI) has a unique minimal event and there is a function root : V → P such798

that for every (v, u) ∈ E, it holds that µ(u) has a unique minimal event e and e belongs799

to root(v), i.e., for µ(u) = (N, p, f, l, (≤p)p∈P), we have that p(e) = root(v) and e ≤ e′ for800

every e′ ∈ N .801

I Proposition 5.10 (Prop. 21 [39]). For any local HMSC H, Lfin(H) is payload implementable.802

The algorithm to construct a deadlock free CSM [39, Sec. 5.2] suggests that the BMSCs803

for such HMSCs need to be maximal – in the sense that any vertex with a single successor is804

collapsed with its successor. If this was not the case, the result would claim that the language805
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of the following global type is payload implementable: µt. +
{

p→q :m1. r→s :m2. t

p→q :m3.
. However,806

is is easy to see that it is not payload implementable since there is no interaction between p,807

which decides whether to stay in the loop or not, and r. Thus, we cannot simply check808

whether H(G) is local. In fact, it would always be. Instead, we first need to minimise it and809

then check whether it is local. If we collapse the two consecutive vertices with independent810

pairs of roles in this example, the HMSC is not local. The representation of the HMSC811

matters which shows that local as property is rather a syntactic than a semantic notion.812

I Algorithm 2 (Checking if G is local). Let G be a global type G. We consider the finite813

trace w′ of every longest branch-free, loop-free and non-initial run in the state machine814

GAut(G). We split the (synchronous) interactions into asynchronous events: w = split(w′) =815

w1 . . . wn. We need to check if there is u ∼ w with u = u1 . . . un such that u1 6= w1. For this,816

we can construct an MSC for w′ [38, Sec. 3.1] and check if there is a single minimal event,817

because MSCs are closed under ≈ [77, Lm. 5]. If this is the case for any trace w′, we return818

false. If not, we return true.819

It is straightforward that this mimics the corresponding check for the HMSC H(G) and,820

including similar modifications as for Algorithm 1, the check can be done in O(|G|).821

I Proposition 5.11. For a global type G, Algorithm 2 returns true iff H(G) is local.822

Ben-Abdallah and Leue [10] introduced local-choice HMSCs which are as expressive as823

local HMSCs. Their condition also uses a root-function and minimal events but quantifies824

over paths. Every local HMSC is a local-choice HMSC and every local-choice HMSC can be825

translated to a local HMSC, which accepts the same language, with a quadratic blow-up [39].826

It is straightforward to adapt the Algorithm 2 to check if a global type is local-choice. If this827

is the case, we translate the protocol and use the implementation for the translated protocol.828

6 Implementability with Intra-role Reordering829

In this section, we introduce a generalisation of the implementability problem that relaxes830

the total event order for each role and allows to reorder receive events. We prove that this831

generalisation is undecidable in general.832

A Case for More Reordering833

From the perspective of a single role, each word in its language consists of a sequence of834

receive and send events. Choice in global types happens by sending (and not by receiving).835

Because of this, one can argue that a role should be able to receive messages from different836

senders in any order between sending two messages. In practice, receiving a message can837

induce a task with non-trivial computation, which is not reflected in our model. Thus, such838

a reordering for a sequence of receive events can have outsized performance benefits. In839

addition, there are global types that can be implemented with regard to this generalised840

relation even if no (standard) implementation exists.841

I Example 6.1 (Example for intra-role reordering). Let us consider a global type where a842

central coordinator p distributes independent tasks to different roles in rounds:843

GTC := µt.

{
p→q1 : task . . . . p→qn : task . q1→p : result . . . . qn→p : result . t
p→q1 :done . . . . p→qn :done . 0

.844

Since all tasks in each round are independent, p can benefit from receiving the results in the845

order they arrive instead of busy-waiting.846

We generalise the indistinguishability relation ∼ accordingly.847
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I Definition 6.2 (Intra-role indistinguishability relation). We define a family of intra-role848

indistinguishability relations ≈i ⊆ Σ∗ × Σ∗, for i ≥ 0 as follows. For all w, u ∈ Σ∗, w ∼i u849

entails w ≈i u. For i = 1, we define: if q 6= r, then w.p/q?m.p/r?m′.u ∼1 w.p/r?m′.p/q?m.u.850

Based on this, we define ≈ analogously to ∼. Let w, w′, w′′ be words s.t. w ≈1 w
′ and851

w′ ≈i w′′ for some i. Then w ≈i+1 w
′′. We define w ≈ u if w ≈n u for some n. It is852

straightforward that ≈ is an equivalence relation. Define u �≈ v if there is w ∈ Σ∗ such that853

u.w ≈ v. Observe that u ∼ v iff u �≈ v and v �≈ u. We extend ≈ to infinite words and854

languages as for ∼.855

I Definition 6.3 (Implementability with intra-role reordering ≈). A global type G is said to856

be implementable with regard to ≈ if there exists a deadlock free CSM {{Ap}}p∈P such that857

(i) L(G) ⊆ C≈(L({{Ap}}p∈P)) and (ii) C≈(L(G)) = C≈(L({{Ap}}p∈P)). We say that {{Ap}}p∈P858

≈-implements G.859

In this section, we emphasise the indistinguishability relation, e.g., ≈-implementable,860

which is considered. We could have also followed the definition of ∼-implementability and861

required C≈(L(G)) = L({{Ap}}p∈P). This, however, requires the CSM to be closed under ≈.862

In general, this might not be possible with a finite number of states. In particular, if there is863

a loop without send event for a role, the labels in the loop would introduce an infinite closure864

if we require that C≈(L(G))⇓Σr
= L(Ar).865

I Example 6.4. We consider a variant of GTC from Example 6.1 with n = 2 where q1 and866

q2 send a log message to r after receiving the task and before sending the result back:867

GTCLog := µt.

{
p→q1 : task . p→q2 : task . q1→r : log . q2→r : log . q1→p : result . q2→p : result . t
p→q1 :done . p→q2 :done . 0

.868

There is no FSM for r that precisely accepts C≈(L(GTCLog))⇓Σr
as it would need keep count869

of the difference at any point in time which can be unbounded. If we rely on the fact that870

q1 and q2 send the same number of log-messages to r, we can use an FSM Ar with a single871

state (both initial and final) with two transitions: one for the log-message from q1 and q2872

each, that lead back to the same state. For this, it holds that C≈(L(GTCLog))⇓Σr
⊆ L(Ar).873

This is why we chose a more permissive definition which is required to cover at least as874

much as specified in the global type (i) and the ≈-closure of both are the same (ii).875

It is trivial that any ∼-implementation for a global type does also ≈-implement it.876

I Proposition 6.5. Let G be a global type that is ∼-implemented by the CSM {{Ap}}p∈P .877

Then, {{Ap}}p∈P also ≈-implements G.878

For instance, the task coordination protocol from Example 6.1 can be ∼-implemented as879

well as ≈-implemented by an erasure candidate implementation. Still, ≈-implementability880

gives more freedom and allows to consider all possible combinations of arrivals of results.881

In addition, ≈-implementability renders some global types implementable which would not882

be otherwise. For instance, those with a role that would need to receive different sequences,883

which are related by ≈, in different branches it cannot distinguish (yet).884

I Example 6.6 (≈-implementable but not ∼-implementable). Let us consider the following885

global type: (p→ q : l. p→ r :m. q→ r :m. 0) + (p→ q : r. q→ r :m. p→ r :m. 0). This cannot886

be ∼-implemented because r would need to know the branch to receive the messages from887

p and q in the correct order. However, it is ≈-implementable. The FSMs for p and q can888

be obtained with projection by erasure. For r, we can have an FSM that only accepts889

r / p?m. r / q?m but also an FSM which accepts r / q?m. r / p?m in addition. Note that r890

does not learn the choice in the second FSM even if it branches. Hence, it would not be891
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Figure 7 HMSC encoding H(GMPCP) of the MPCP encoding

implementable if it sent different messages in both branches later on. However, it could still892

learn by receiving and, afterwards, send different messages.893

Implementability with Intra-role Reordering is Undecidable894

Unfortunately, checking implementability with regard to ≈ for global types (with directed895

choice) is undecidable. Intuitively, the reordering allows roles to drift arbitrarily far apart as896

the execution progresses which makes it hard to learn which choices were made.897

We reduce the Post Correspondence Problem (PCP) [73] to the problem of checking898

implementability with regard to ≈. An instance of PCP over an alphabet ∆, |∆| > 1, is given899

by two finite lists (u1, u2, . . . , un) and (v1, v2, . . . , vn) of finite words over ∆. A solution to the900

instance is a sequence of indices (ij)1≤j≤k with k ≥ 1 and 1 ≤ ij ≤ n for all 1 ≤ j ≤ k, such901

that ui1 . . . uik = vi1 . . . vik . To be precise, we present a reduction from the modified PCP902

(MPCP) [76, Sec. 5.2], which is also undecidable. It simply requires that a match starts903

with a specific pair — in our case we choose the pair with index 1. It is possible to directly904

reduce from PCP but the reduction of MPCP is more concise. Intuitively, we require that905

the solution starts with the first pair so there exists no trivial solution and choosing a single906

pair is more concise than all possible ones. Our encoding is the following global type where907

x ∈ {u, v}, [xi] denotes a sequence of message interactions with message xi[1], . . . , xi[k] each908

for xi of length k, message c-x indicates choosing tile set x, and message ack-x indicates909

acknowledging the tile set x:910

GMPCP := +
{
G(u, r→p :ack-u. 0)
G(v, r→p :ack-v. 0)

with911

912
G(x,X) := p→q :c-x. p→q :1. p→r :1. q→r : [x1]. µt1. +


p→q :1. p→r :1. q→r : [x1]. t1

...
p→q :n. p→r :n. q→r : [xn]. t1
p→q :d. p→r :d. q→r :d.X

.913

914

The HMSC encoding H(GMPCP) is illustrated in Figure 7. Intuitively, r eventually needs to915

know which branch was taken in order to match ack-x with c-x from the beginning. However,916

it can only know if there is no solution to the MPCP instance. In the full proof in Appendix E,917

we show that GMPCP is ≈-implementable iff the MPCP instance has no solution.918

I Theorem 6.7. Checking implementability with regard to ≈ for global types with directed919

choice is undecidable.920

This result carries over to HMSCs if we consider safe realisability with regard to ≈.921

I Definition 6.8 (Safe realisability with regard to ≈). An HMSC H is said to be safely922

realisable with regard to ≈ if there exists a deadlock-free CSM {{Ap}}p∈P such that the923

following holds: (i) L(H) ⊆ C≈(L({{Ap}}p∈P)) and (ii) C≈(L(H)) = C≈(L({{Ap}}p∈P)).924

I Corollary 6.9. Checking safe realisability with regard to ≈ for HMSCs is undecidable.925
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In fact, the HMSC encoding for GMPCP satisfies a number of channel restrictions. The926

HMSC H(GMPCP) is existentially 1-bounded, 1-synchronisable and half-duplex [77]. For927

details on these channel restrictions, we refer to work by Stutz and Zufferey [77, Sec. 3.1].928

I Remark 6.10 (Sending to the rescue). The MPCP encoding only works since receive events929

can be reordered unboundedly in an execution. If we amended the definition of ≈ to give930

each receive event a budget that depletes with every reordering, this encoding would not be931

possible. Alternatively, one could require every active role in a loop to send at least once.932

This also prevents such an unbounded reordering. For such restrictions on the considered933

indistinguishability relation, the corresponding implementability problem likely becomes934

decidable. We leave a detailed analysis for future work.935

7 Related Work936

In this section, we solely cover related work which we have not discussed before.937

Session types originate in process algebra and were first introduced by Honda et al. [46] for938

binary session. For systems with more than two roles, they have been extended to multiparty939

session types [48]. Their connection to linear logic [41] has been studied subsequently [37, 84,940

17]. In this work, we explained MST frameworks with classical projection operators. Other941

approaches do not focus on projection but, for instance, employ model checking [75] or only942

apply ideas from MST without the need for global types [61].943

Our decidability result applies to global types with generalised choice. There are only944

few MST frameworks that effectively allow to generate local types from global types with945

generalised choice for an asynchronous setting. Castellani et al. [20] consider a synchronous946

setting. The same holds for the work by Jongmans and Yoshida [55] but their parallel947

operator allows to model some asynchrony with bag semantics. The setting in the work948

by Lange et al. [59] yields semantics similar to Petri nets. To the best of our knowledge,949

the work by Castagna et al. [19] is the only one to attempt completeness for global types950

with generalised choice. However, their notion of completeness allows to omit redundant951

executions for underspecified global types [19, Def. 4.1]. Their conditions, given as inference952

rules, are not effective and their algorithmically checkable conditions can only exploit local953

information to disambiguate choices. In contrast, Majumdar et al. [64] employ a global954

availability analysis but, as classical projection operator, it suffers from the shortcomings955

presented in this work. For a detailed overview of frameworks allowing generalised choice,956

we refer to their work [64]. They also present a counterexample to the implementability957

conditions formulated for Choreography Automata [8]. The global types by Dagnino et958

al. [31] specify send and receive events independently but each term requires to send to a959

single receiver and to receive from a single sender upon branching. They present a sound960

and complete type inference algorithm that infers all global types for a given system.961

Here, we do not distinguish between local types and implementations but use the local962

types directly as implementations. Intuitively, subtyping studies possibilities to give freedom963

in the implementation while preserving the soundness properties. The intra-role indistin-964

guishability relation ≈, which allows to reorder receive events for a role, resembles subtyping965

to some extent, e.g., the work by Cutner et al. [30]. A detailed investigation of this relation966

is beyond the scope of this work. For details on subtyping, we refer to work by Chen et967

al. [27, 26], Lange and Yoshida [60], and Bravetti et al. [16].968

Various extensions to make MST verification applicable to more scenarios were studied:969

for instance delegation [47, 48, 21], dependent session types [80, 35, 81], parametrised session970

types [24, 35], gradual session types [51], or dynamic self-adaption [43]. Context-free session971
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types [79, 56] provide a more expressive way to specify protocols in the MST domain.972

Recently, research on fault-tolerant MSTs [83, 9, 72] investigated ways to weaken the strict973

assumptions about reliable channels.974

Choreographic programming [29, 40, 45] applies a similar approach as MSTs: they allow975

to specify a global protocol specification with joint send and receive events and project to976

end-point views. As for Pirouette by Hirsch and Garg [45], there are first mechanisations of977

MST frameworks [78, 22, 53, 52].978

The connection of MSTs and CSMs was studied soon after MSTs had been proposed [34].979

CSMs are known to be Turing-powerful [15]. Decidable classes have been obtained for980

different semantics, e.g., half-duplex communication for two roles [23], input-bounded [12],981

and unreliable/lossy channels [2], as well for restricted communication topology [71, 82].982

Similar restrictions for CSMs are existential boundedness [38] and synchronisability [14, 42].983

It was shown that global types can only express existentially 1-bounded, 1-synchronisable984

and half-duplex communication [77] while Bollig et al. [13] established a connection between985

synchronisability and MSO logic.986

Globally-cooperative HMSCs were independently introduced by Morin [67] as c-HMSCs.987

Their communication graph is weakly connected. The class of bounded HMSCs [5] requires988

it to be strongly connected. Historically, it was introduced before the class of globally-989

cooperative HMSCs and, after the latter has been introduced, safe realisability for bounded990

HMSCs was also shown to be EXPSPACE-complete [63]. This class was independently991

introduced as regular HMSCs by Muscholl and Peled [69]. Both terms are justified: the992

language generated by a regular HMSC is regular and every bounded HMSC can be imple-993

mented with universally bounded channels. In fact, a HMSC is bounded if and only if it is a994

globally-cooperative and it has universally bounded channels [39, Prop. 4].995

We cover approaches which introduced the idea of choice to HMSCs that were not996

discussed in Section 5. Ben-Abdallah and Leue [10] approached the realisability problem by997

defining and detecting non-local choice, which are basically choices not made by a single role.998

Their semantics, however, incorporates queuing behaviour that renders their systems finite-999

state. Another line of work [68, 66] identified that non-local choice and implied scenarios are1000

strongly coupled. An implied scenario is an execution, which is not specified in the HMSC,1001

but any candidate implementation necessarily exposes. Initial attempts by Muccini [68]1002

yielded contradictory observations as shown by Mooij et al. [66] so they proposed variants of1003

non-local choice but they accept the implied scenarios from such choices as given in the HMSC.1004

Hélouët and Jard [44] pointed out that the absence of non-local choice does not guarantee1005

implementability but just less ambiguity. They proposed reconstructibility which shall entail1006

implementability. Majumdar et al. [64] showed that their notion of reconstructibility, with1007

the requirement of unique messages, is quite restrictive but also flawed.1008

In addition to local HMSCs, Genest et al. [39] also introduced locally-cooperative HMSCs.1009

Intuitively, they require for every two successors that each of their communication graphs as1010

well as their concatenation’s communication graph is weakly connected but it is only known1011

that checking weak realisability (the one allowing deadlocks) has linear time complexity.1012

Non-FIFO channel semantics has also been considered for HMSCs for which the complexity1013

for safe realisability does not change while it has an influence on weak realisability [63].1014

8 Conclusion1015

We have proven decidability of the implementability problem for global types with generalised1016

choice from MSTs — under the mild assumption that protocols can (but do not need to)1017
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terminate. To point at the origin for incompleteness of classical projection operators, we gave1018

a visual explanation of the projection with various merge operators on finite state machines,1019

which define the semantics of global and local types. To prove decidability, we formally1020

related the implementability problem for global types with the safe realisability problem for1021

HMSCs. While safe realisability is undecidable, we showed that implementable global types1022

do always belong to the class of globally-cooperative HMSCs. There are global types that1023

are outside of this class but the syntax of global types allowed us to prove that those can not1024

be implemented. Another key was the extension of the HMSC results to infinite executions.1025

We gave a comprehensive overview of MSC techniques and adapted some to the MST setting.1026

Furthermore, we introduced a performance-oriented generalisation of the implementability1027

problem which, however, we proved to be undecidable in general.1028
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A Definitions for Section 2:1385

Multiparty Session Types1386

A.1 Semantics of Communicating State Machines [77, App. A.4]1387

With Chan = {〈p, q〉 | p, q ∈ P, p 6= q}, we denote the set of channels. The set of global1388

states of a CSM is given by
∏

p∈P Qp. Given a global state q, qp denotes the state of p in q.1389

A configuration of a CSM A is a pair (q, ξ), where q is a global state and ξ : Chan→ V∞ is a1390

mapping of each channel to its current content. The initial configuration (q0, ξε) consists of1391

a global state q0 where the state of each role is the initial state q0,p of Ap and a mapping ξε,1392

which maps each channel to the empty word ε. A configuration (q, ξ) is said to be final iff1393

each individual local state qp is final for every p and ξ is ξε.1394

The global transition relation → is defined as follows:1395

(q, ξ) p.q!m−−−−→ (q′, ξ′) if (qp, p . q!m, q′p) ∈ δp, qr = q′r for every role r 6= p, ξ′(〈p, q〉) =1396

ξ(〈p, q〉) ·m and ξ′(c) = ξ(c) for every other channel c ∈ Chan.1397

(q, ξ) q/p?m−−−−→ (q′, ξ′) if (qq, q / p?m, q′q) ∈ δq, qr = q′r for every role r 6= q, ξ(〈p, q〉) =1398

m · ξ′(〈p, q〉) and ξ′(c) = ξ(c) for every other channel c ∈ Chan.1399

(q, ξ) ε−→ (q′, ξ) if (qp, ε, q
′
p) ∈ δp for some role p, and qq = q′q for every role q 6= p.1400

A run of the CSM always starts with an initial configuration (q0, ξ0), and is a finite or1401

infinite sequence (q0, ξ0) w0−−→ (q1, ξ1) w1−−→ . . . for which (qi, ξi)
wi−→ (qi+1, ξi+1). The word1402

w0w1 . . . ∈ Σ∞ is said to be the trace of the run. A run is called maximal if it is either1403

infinite or finite and ends in a final configuration. As before, the trace of a maximal run is1404

maximal. The language L(A) of the CSM A consists of its set of maximal traces.1405

B Additional Explanation for Different Merge Operators on FSMs1406

from Section 31407

Visual Explanation of the Parametric Projection Operator: Collapsing Erasure Here,1408

we describe collapsing erasure more formally. Let G be some global type and r be the role1409

on to which we project. We apply the parametric projection operator to the state machine1410

GAut(G). It projects each transition label on to the respective event for role r: every forward1411

transition label p→q :m turns to p . q!m if r = p, p / q?m if r = q, and ε otherwise. Then, it1412

collapses neutral states with a single successor: q1|2 replaces two states q1 and q2 if q1
ε−→ q21413

is the only forward transition for q1 and q1
x−→ q2 for x 6= ε in δGAut(G). In case there is only1414

a backward transition from q1 to q2, the state q1|2 is also final. This accounts for loops a1415

role is not part of.1416

We call this procedure collapsing erasure as it erases interactions that do not belong1417

to a role and collapses some states. It is common to all the presented merge operators.1418

This procedure yields a state machine over Σr. It is straightforward that it is still ancestor-1419

recursive, free from intermediate recursion and non-merging. However, it might not be dense.1420

In fact, it is not dense if r is not involved in some choice with more than one branch.1421

Parametric Merge in the Visual Explanation The parametric projection operator applies1422

the merge operator for these cases. Visually, these correspond precisely to the remaining1423

neutral states (since all neutral states with a single successor have been collapsed). For1424

instance, we have a neutral state q1 with q1
ε−→ q2 and q1

ε−→ q3 for q2 6= q3. Through the1425

parametric projection operator, the merge operator may be indirectly called recursively. Thus,1426

we explain the merge operators for two states (and their cones) in general. No information is1427
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propagated when the merge operator recurses and recursion variables are never unfolded.1428

Thus, we can ignore backward transitions and consider the cones of q2 and q3. Intuitively,1429

we iteratively apply the merge operator from lower to higher levels. However, we might need1430

descend again when merge is applied recursively. Similar to the syntactic version, we do only1431

explain the 2-ary case but the reasoning easily lifts to the n-ary case.1432

Visual Explanation of Plain Merge The plain merge is not applied recursively. Thus, we1433

consider q1 with q1
ε−→ q2 and q1

ε−→ q3 for q2 6= q3 such that q1 has the lowest level for which1434

this holds. Hence, we can assume that each cone of q2 and q3 does not contain neutral states.1435

Then, the plain merge is only defined if there is an isomorphism between the states of both1436

cones that satisfy the following conditions:1437

it preserves the transition labels and hence the kind of states, and1438

if a state has a backward transition to a state outside of the cone, its isomorphic state1439

has a transition to the some state1440

If defined, the result is q1 with its cone (and q2 with its cone is removed).1441

Visual Explanation of Semi-full Merge The semi-full merge applies itself recursively. Thus,1442

we consider two states q2 6= q3 that shall be merged. As before, we can assume that each1443

cone of q2 and q3 does not contain neutral states. In addition to plain merge, the semi-full1444

merge allows to merge receive states. For these, we introduce a new receive state q2|3 from1445

which all new transitions start. For all possible transitions from q2 and q3, we check if there1446

is a transition with the same label from the other state. For the ones not in common, we1447

simply add the respective transition with the state it leads to and its respective cone. For1448

the ones in common, we recursively check if the two states, which both transitions lead to,1449

can be merged. If not, the semi-full merge is undefined. If so, we add the original transition1450

to the state of the respective merge and keep its cone.1451

Visual Explanation of Full Merge Intuitively, the full merge simply applies the idea of1452

the semi-full merge to another case. For the semi-full merge, one can recursively apply the1453

merge operator when a reception was common between two states to merge. The full merge1454

operator allows to descend for recursion variable binders.1455

C Formalisation for Section 4:1456

Implementability for Global Types from MSTs is Decidable1457

C.1 Definitions for Section 4.11458

I Definition C.1 (Concatenation of MSCs [77]). LetMi = (Ni, pi, fi, li, (≤ip)p∈P) for i ∈ {1, 2}1459

where M1 is a BMSC and M2 is an MSC with disjoint sets of events, i.e., N1 ∩N2 = ∅. We1460

define their concatenation M1 ·M2 as the MSC M = (N, p, f, l, (≤p)p∈P) where:1461

N := N1 ∪ N2,1462

for ζ ∈ {p, f, l} : ζ(e) :=
{
ζ(e) if e ∈ N1

ζ(e) if e ∈ N2
, and1463

∀p ∈ P : ≤p := ≤1
p ∪ ≤2

p ∪ {(e1, e2) | e1 ∈ N1 ∧ e2 ∈ N2 ∧ p(e1) = p(e2) = p}.1464

I Definition C.2 (Language of an HMSC [77]). Let H = (V,E, vI, V T, µ) be an HMSC. The1465

language of H is defined as1466

L(H) := {w | w ∈ L(µ(v1)µ(v2) . . . µ(vn)) with v1 = vI ∧ ∀ 0 ≤ i < n : (vi, vi+1) ∈ E ∧ vn ∈ V T }1467

∪ {w | w ∈ L(µ(v1)µ(v2) . . .) with v1 = vI ∧ ∀ i ≥ 0 : (vi, vi+1) ∈ E} .14681469
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C.2 Proof of Lemma 4.8: Projection by Erasure is Correct1470

Let H = (V,E, vI, V T, µ) be an HMSC. For every v ∈ V , it is straightforward that the1471

construction of µ(v)⇓p yields L(µ(v))⇓Σp
= L(µ(v)⇓p) (1). We recall that ∼ does not reorder1472

events by the same role: w ∼ w′ for w ∈ Σp iff w = w′ (2).1473

The following reasoning proves the claim where the first equivalence follows from the1474

construction of the transition relation of H⇓p:1475

w ∈ L(H⇓p)1476

⇔ w = w1 . . . , there is a path v1, . . . in H and wi ∈ L(µ(vi)⇓p) for every i1477

(1)⇔ w = w1 . . . , there is a path v1, . . . in H and wi ∈ L(µ(vi))⇓Σp
for every i1478

(2)⇔ w ∈ L(H)⇓Σp
1479

1480
1481

C.3 Proof of Theorem 4.10:1482

Erasure Candidate Implementation is Sufficient1483

We first use the correctness of the global type encoding (Theorem 4.5) to observe that1484

Lfin(G) = Lfin(H(G)). Theorem 13 by Alur et al. [3] states that the canonical candidate1485

implementation implements Lfin(H(G)) if it is implementable. Corollary 4.9 and the fact1486

that the FSM for each role is deterministic by construction allows us to replace every Ap1487

from the canonical candidate implementation with the projection by erasure H(G)⇓p for1488

every role p which proves the claim. J1489

C.4 Proof of Lemma 4.11:1490

Erasure Candidate Implementation Generalises to Infinite Case1491

Let us assume that G is implementable. From Theorem 4.10, we know that {{H(G)⇓p}}p∈P1492

is deadlock free and Lfin({{H(G)⇓p}}p∈P) = Lfin(G).We prove the claim by showing both1493

inclusions.1494

First, we show that Linf({{H(G)⇓p}}p∈P) ⊆ Linf(G). For this direction, let w be a1495

word in Linf({{H(G)⇓p}}p∈P). We need to show that there is a run ρ in GAut(G) such that1496

w �ω∼ split(trace(ρ)). From the 0-Reachable-Assumption (p.15), we know that for every1497

u ∈ pref(w), it holds that u ∈ pref(Lfin(G)). Thus, there exists a finite run ρ (that does not1498

necessarily end in a final state) and u′ such that u.u′ ∼ trace(ρ). We call ρ a witness run.1499

Intuitively, we will need to argue that every such witness run for u can be extended when1500

appending the next event x from w to obtain ux. In general, this does not hold for every1501

choice of witness run. However, because of monotonicity, any run (or rather a prefix of it)1502

for an extension ux can also be used as witness run for u. Thus, we make use of the idea of1503

prophecy variables [1] and assume an oracle which picks the correct witness run for every1504

prefix u. This oracle does not restrict the next possible events in any way. From here, we1505

apply the same idea as Majumdar et al. for the proof of Lemma 41 [64]. We construct a1506

tree T such that each node represents a run ρ of some finite prefix w′ of w. The root’s label is1507

the empty run. For every node labelled with ρ, the children’s extend ρ by a single transition.1508

The tree T is finitely branching by construction of GAut(G) for every role p. With König’s1509

Lemma, we obtain an infinite path in T and thus an infinite run ρ in GAutasync(G) with1510

w �ω∼ trace(ρ). From this, it follows that w ∈ Linf(G).1511

Second, we show that Linf(G) ⊆ Linf({{H(G)⇓p}}p∈P). Let w be a word in Linf(G).1512

Eventually, we will apply the same reasoning with König’s lemma to obtain an infinite run1513
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in {{H(G)⇓p}}p∈P for w. Inspired from the first statement of Lemma 25 by Majumdar et1514

al. [64], we show:1515

(i) for every prefix w′ ∈ pref(w), there is a run ρ′ in {{H(G)⇓p}}p∈P such that w′ � trace(ρ′),1516

and1517

(ii) for every extension w′x where x is the next event in w, the run ρ′ can be extended1518

We prove Claim (i) first. We first observe that, with the 0-Reachable-Assumption (p.15),1519

there is an extension w′′ of w′ with w′′ ∈ L(G). By construction, we know that there is a run1520

ρ′′ in {{H(G)⇓p}}p∈P for w′′. For ρ′, we can simply take the prefix of ρ′′ which matches w′.1521

This proves Claim (i).1522

Now, let us prove Claim (ii). Similar to the first case, we will use prophecy variables and1523

an oracle to pick the correct witness run that we can extend. Again, because of monotonicity,1524

any run (or rather a prefix of it) for an extension w′x can also be used as witness run for w′.1525

As before, we make use of the idea of prophecy variables [1], assume an oracle which picks1526

the correct witness run for every prefix w′, and this oracle does not restrict the roles in any1527

way. From this, Claim (ii) follows.1528

From here, we (again) use the same reasoning as Majumdar et al. for the proof of1529

Lemma 41 [64]. We construct a tree T such that each node represents a run ρ of some finite1530

prefix w′ of w. The root’s label is the empty run. For every node labelled with ρ, the children’s1531

extend ρ by a single transition. The tree T is finitely branching by construction of Ap for1532

every role p. With König’s Lemma, we obtain an infinite path in T and, thus, an infinite run ρ1533

in {{H(G)⇓p}}p∈P with w �ω∼ trace(ρ). From this, it follows that w ∈ L({{H(G)⇓p}}p∈P).1534

J1535

C.5 Formalisation for Lemma 4.15:1536

Implementability entails Globally Cooperative1537

I Definition C.3 (Matching Sends and Receptions (Def. 2 [77])). In a word w = e1 . . . ∈ Σ∞,1538

a send event ei = p . q!m is matched by a receive event ej = q / p?m, denoted by ei à ej, if1539

i < j and V((e1 . . . ei)⇓p.q!_) = V((e1 . . . ej)⇓q/p?_). A send event ei is unmatched if there1540

is no such receive event ej.1541

Proof. We prove our claim by contraposition: assume there is a loop v1, . . . , vn such that the1542

communication graph of µ(v1) . . . µ(vn) is not weakly connected. By construction of H(G),1543

we know that every vertex is reachable so there is a path u1 . . . umv1 . . . vn in H(G) for1544

some m and vertices u1 to un such that u1 = vI . By the 0-Reachable-Assumption (p.15), this1545

path can be completed to end in a terminal vertex to obtain u1 . . . umv1 . . . vnum+1 . . . um+k1546

for some k and vertices um+1 to um+k such that uk+m ∈ V T . By the syntax of global types1547

and the construction of H(G), there is a role p that is the (only) sender in v1 and um+1.1548

Without loss of generality, let S1 and S2 be the two sets of (active) roles whose communi-1549

cation graphs of v1 . . . vn are weakly connected and their union consists of all active roles.1550

Similar reasoning applies if there are more than two sets.1551

We want to consider the specific linearisations from the language of the BMSC of each1552

subpath. Intuitively, these simply follow the order prescribed by the global type and do1553

not exploit the partial order of BMSC or the closure of the semantics for global types. For1554

this, we say that w1 is the canonical word for path u1, . . . um if w1 ∈ {w′1 . . . w′m | w′i ∈1555

L(µ(ui)) for 1 ≤ i ≤ m}. Analogously, let w2 be the canonical word for v1 . . . vn and w3 be1556

the canonical word for um+1 . . . um+k. Without loss of generality, S1 contains the sender of1557

the first element in w2 and w3 — basically the role which decides when to exit the loop for1558

the considered loop branch. Let {{H(G)⇓p}}p∈P be the erasure candidate implementation.1559
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By its definition and the correctness of H(G), it holds that: L(G) = L(H(G)). With the1560

equivalence of the canonical candidate implementation (Corollary 4.9), the reasoning for1561

Lemma 3.2 by Lohrey [63], and the fact that it generalises to infinite executions Lemma 4.11,1562

the erasure candidate implementation admits at least the language specified by H(G):1563

L(H(G)) ⊆ L({{H(G)⇓p}}p∈P).1564

Thus, it holds that L(G) = L({{H(G)⇓p}}p∈P) if G is implementable. Therefore, we know1565

that w1 . w2 . w3 ∈ L({{H(G)⇓p}}p∈P).1566

From the construction of H(G) and the construction of wi for i ∈ {1, 2, 3}, it also holds1567

that w1 . (w2)h . w3 ∈ L(H(G)) ⊆ L({{H(G)⇓p}}p∈P) for any h > 0.1568

By construction of S1 and S2, no two roles from both sets communicate with each other1569

in w2: there are no r ∈ S1 and s ∈ S2 such that r . s!m is in w2 or s . r!m is in w2 (and1570

consequently r / s?m is in w2 or s / r?m is in w2) for any m.1571

From the previous two observations, it follows that1572

w1 . w2 . (w2⇓ΣS1
)h. w3 ∈ L({{H(G)⇓p}}p∈P)1573

for any h where ΣS1 =
⋃

r∈S1
Σr. Intuitively, this means that the set of roles with the role1574

to decide when to exit the loop can continue longer in the loop than the roles in S2.1575

With L(G) = L(H(G)), it suffices to show the following to find a contradiction:1576

w1 . w2 . (w2⇓ΣS1
). w3 /∈ L(H(G)).1577

Towards a contradiction, we assume the membership holds. By determinacy of H(G), we1578

need to find a path v′1 . . . v′m′ , that starts at the beginning of the loop, i.e., v′1 = v1, with1579

canonical word w4 such that w2⇓ΣS1
. w3 ∼ w4.1580

We show such a path cannot exist and that we would need to diverge during the loop.1581

For readability, we denote w2 . w3 with x and w2⇓ΣS1
. w3 with x′. We know that x′ is1582

a subsequence of x, i.e., x′ = x′1 . . . x
′
l and x = x1 . . . xl′ . Let x1 . . . xj = x′1 . . . x

′
j denote1583

the maximal prefix on which both agree. Since S2 is not empty, we know that j can be1584

at most |w2⇓ΣS1
|. (Intuitively, j cannot be so big that it reaches w3 because there will be1585

mismatches due to w2⇓ΣS2
before.) We also claim that the next event xj+1 cannot be a1586

receive event. If it was, there was a matching send event in x1 . . . xj (which is equal to1587

x′1 . . . x
′
j by construction). Such a matching send event exists by construction of x from a1588

path in H(G). By definition of ⇓-, the matching receive event must be x′j+1 which would1589

contradict the maximality of j. Thus, xj+1 must be a send event.1590

By determinacy of H(G) and j ≤ |w2⇓ΣS1
|, we know that x1 . . . xj = x′1 . . . x

′
j share a1591

path v1 . . . vn′ which is a part of the loop, i.e., x1 . . . xj ∈ L(µ(v1) · · ·µ(vn′)) with n < n′.1592

For M(p→q :m) — the BMSC with solely this interaction from Definition 4.4, we say that1593

p is its sender. The syntax of global types prescribes that choice is deterministic and the1594

sender in a choice is unique. This is preserved for H(G): for every vertex, all its successors1595

have the same sender. Therefore, the path for x′ can only diverge, but also needs to diverge,1596

from the loop v1 . . . vn after the common prefix v1 . . . vn′ with a different send event but with1597

the same sender. Let vl be next vertex after v1 . . . vn′ on the loop v1, . . . , vn for which µ(vl)1598

is not Mε — the BMSC with an empty set of event nodes from Definition 4.4. Note that1599

xj+1 belongs to vl: xj+1 ∈ pref(L(µ(vl))).1600

We do another case analysis whether xj+1 belongs to S1 or not, i.e., if xj+1 ∈ ΣS1 .1601

If xj+1 /∈ ΣS1 , there cannot be a path that continues for x′j+1 as the sender for µ(vi) is1602

not in S1. If xj+1 ∈ ΣS1 , the choice of j was not maximal which yields a contradiction. J1603

C.6 Further Explanation for Example 4.161604

Here, we show that any trace of the CSM is specified by the HMSC. Let us consider a finite1605

execution of the CSM for which we want to find a path in the HMSC. Let us assume there1606
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are i interactions between p and q and j interactions between r and s. In our asynchronous1607

setting, these interactions are split and can be interleaved. From the CSM, it is easy to see1608

that i is at least 2 and j is at least 1. The simplest path goes through the first loop once and1609

accounts for i− 1 iterations in the second loop and j − 1 iterations in the third one. A more1610

involved path could account for min(i, j)− 1 iterations of the first loop, as many as possible,1611

and i−min(i, j) + 1 iterations of the second loop as well as j −min(i, j) + 1 iterations of1612

the third loop. The key that both paths are valid possibilities is that the interactions of p1613

and q in the first and second loop are indistinguishable, i.e., the executions can be reordered1614

with ∼ such that both is possible. The syntactic restriction on choice does prevent this1615

for global types (and this protocol cannot be represented with a global type). Intuitively,1616

one cannot make up for a different number of loop iterations, that are the consequence of1617

missing synchronisation, in global types because the “loop exit”-message will be distinct1618

(compared to staying in the loop) and anything specified afterwards cannot be reordered1619

by ∼ in front of it. It is straightforward to adapt the protocol so final states do not have1620

outgoing transitions. We add another vertex with a BMSC at the bottom, which has the1621

same structure as the top one but with another message l instead of m. We add an edge1622

from the previous terminal vertex to the new vertex and make the new one the only terminal1623

vertex. With this, p and r can eventually decide not to send m anymore and indicate their1624

choice with the distinct message l to the other two roles.1625

D Proof for Lemma 5.4:1626

Correctness of Algorithm 1 to check I-closedness of Global Types1627

It is obvious that the language is preserved by the changes to the state machine. (We basically1628

turned an unambiguous state machine into a deterministic one.)1629

For soundness, we assume that Algorithm 1 returns true and let w be a word in1630

C≡I (L(GAut(G))). By definition, there is a run with trace w′ in GAut(G) such that w′ ≡I w.1631

The conditions in Algorithm 1 ensure that w = w′ because no two adjacent elements in w′1632

can be reordered with ≡I . Therefore, w ∈ L(GAut(G)) which proves the claim.1633

For completeness, we assume that the algorithm returns false and show that there is1634

w ∈ C≡I (Lfin(G)) such that w /∈ Lfin(GAut(G)). Without loss of generality, let q2 be the1635

state for which an incoming label x and outgoing label y can be reorderd, i.e., x ≡I y, and1636

let q1 be the state from which the transition with label x originates: q1
x−→ q2 ∈ δGAut(G). We1637

consider a word w′ which is the trace of a maximal run that passes q and the transitions1638

labelled with x and y. By construction, it holds that w′ ∈ Lfin(GAut(G)). We swap x and y in1639

w′ to obtain w. We denote x with p→q :m and y with r→s :m′ such that {p, q}∩{r, s} 6= ∅.1640

From the syntactic restrictions of global types, we know that any transition label from q1 has1641

sender p while every transition label from q2 has sender r. Because of this and determinacy1642

of the state machine, there is no run in GAut(G) with trace w′. Thus, w /∈ Lfin(GAut(G))1643

which concludes the proof. J1644

E Proof for Theorem 6.7: Implementability with regard to1645

Intra-role Reordering for Global Types from MSTs is Undecidable1646

Let {(u1, u2, . . . , un), (v1, v2, . . . , vn)} be an instance of MPCP where 1 is the special index1647

with which each solution needs to start with. We construct a global type where, for a1648

word w = a1a2 · · · am ∈ ∆∗, a message labelled [w] denotes a sequence of individual message1649

interactions with message a1, a2, . . . , am, each of size 1. We define a parametric global type1650
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Figure 8 HMSC encoding H(GMPCP) of the MPCP encoding (same as in main text)

where x ∈ {u, v}:1651

G(x,X) := p→q :c-x. p→q :1. p→r :1. q→r : [x1]. µt1. +


p→q :1. p→r :1. q→r : [x1]. t1
· · ·
p→q :n. p→r :n. q→r : [xn]. t1
p→q :d. p→r :d. q→r :d.X

1652

where c-x indicates choosing tile set x. Using this, we obtain our encoding:1653

GMPCP := +
{
G(u, r→p :c-u. 0)
G(v, r→p :c-v. 0)

.1654

1655

Figure 8 illustrates its HMSC encoding H(GMPCP).1656

It suffices to show the following equivalences:1657

GMPCP is ≈ -implementable1658

⇔1 C≈(L(G(u, 0)))⇓Σr
∩ C≈(L(G(v, 0)))⇓Σr

= ∅1659

⇔2 MPCP instance has no solution1660
1661

We prove ⇒1 by contraposition. Let w ∈ C≈(L(G(u, 0)))⇓Σr
∩ C≈(L(G(v, 0)))⇓Σr

. For1662

x ∈ {u, v}, let wx ∈ C≈(L(G(x, 0))) such that wx⇓Σr
= w. By construction of GMPCP, we1663

know that wx . r . p!ack-x . p / r?ack-x ∈ C≈(L(GMPCP)).1664

Suppose that CSM {{Ap}}p∈P ≈-implements GMPCP. Then, it holds that1665

wx . r . p!ack-x . p / r?ack-x ∈ C≈(L({{Ap}}p∈P))1666

by (ii) from Definition 6.3. We also know that wx . r . p!ack-y . p / r?ack-y /∈ C≈(L(GMPCP))1667

for x 6= y where x, y ∈ {u, v}. By the choice of wu and wv, it holds that wu⇓Σr
= w = wv⇓Σr

.1668

Therefore, r needs to be in the same state of Ar after processing wu⇓Σr
or wv⇓Σr

and it can1669

either send both ack-u and ack-v, only one of them or none of them to p. Thus, either one1670

of the following is true:1671

a) (sending both) wx . r . p!ack-y ∈ pref(C≈(L({{Ap}}p∈P))) for x 6= y where x, y ∈ {u, v}, or1672

b) (sending u without loss of generality) wv . r . p!ack-u /∈ pref(C≈(L({{Ap}}p∈P))), or1673

c) (sending none) wx . r . p!ack-x /∈ pref(C≈(L({{Ap}}p∈P))) for x ∈ {u, v}.1674

All cases lead to deadlocks in {{Ap}}p∈P . For a) and for b) if c-v was chosen in the beginning,1675

p cannot receive the sent message as it disagrees with its choice from the beginning c-x. In1676

all other cases, p waits for a message while no message will ever be sent. Having deadlocks1677

contradicts the assumption that {{Ap}}p∈P ≈-implements G (and there cannot be any CSM1678

that ≈-implements G).1679

We prove ⇐1 next. The language C≈(L(GMPCP)) is obviously non-empty. Therefore, let1680

w′ ∈ C≈(L(GMPCP)). We split w to obtain:1681

w′ = w . r . p!ack-x . p / r?ack-x for some w and x ∈ {u, v}.1682

By construction of GMPCP, we know that1683

w ∈ C≈(L(G(u, 0))) ∪ C≈(L(G(v, 0))).1684
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By assumption, it follows that exactly one of the following holds:1685

w⇓Σr
∈ C≈(L(G(u, 0)))⇓Σr

or w⇓Σr
∈ C≈(L(G(v, 0)))⇓Σr

.1686

We give a≈-implementation for GMPCP. It is straightforward to construct FSMs for both p1687

and q. They are involved in the initial decision and ≈ does not affect their projected languages.1688

Thus, the projection by erasure can be applied to obtain FSMs Ap and Aq. We construct1689

an FSM Ar for r with control state i ∈ {1, . . . , n}, j ∈ {1, . . . ,max(|ui| | i ∈ {1, . . . , n})},1690

d ∈ {0, 1, 2}, and x ∈ {u, v}, where |w| denotes the length of a word. The FSM is constructed1691

in a way such that1692

w⇓Σr
∈ C≈(L(G(u, 0)))⇓Σr

if and only if d is 2 and x is u as well as1693

w⇓Σr
∈ C≈(L(G(v, 0)))⇓Σr

if and only if d is 2 and x is v.1694
1695

We first explain that this characterisation suffices to show that {{Ap}}p∈P ≈-implements G.1696

The control state d counts the number of received d-messages. Thus, there will be no more1697

messages to r in any channel once d is 2 by construction of GMPCP. Once in a state1698

for which d is 2, r sends message ack-u to p if x is u and message ack-v if x is v. With1699

the characterisation, this message ack-x matches the message c-x sent from p to q in the1700

beginning and, thus, p will be able to receive it and conclude the execution.1701

Now, we will explain how to construct the FSM Ar. Intuitively, r keeps a tile number,1702

which it tries to match against, and stores this in i. It is initially set to 0 to indicate no1703

tile has been chosen yet. The index j denotes the position of the letter it needs to match in1704

tile ui next and, thus, is initialised to 1. The variable d indicates the number of d-messages1705

received so far, so initially d is 0. With this, r knows when it needs to send ack-x. The FSM1706

for r tries to match the received messages against the tiles of u, so x is initialised to u. If1707

this matching fails at some point, x is set to v as it learned that v was chosen initially by p.1708

In any of the following cases: if a received message is a d-message, d is solely increased by 1:1709

If x is u and i is 0, r receives a message z from p and sets i to z (technically the integer1710

represented by z).1711

If x is u and i is not 0, r receives a message z from q.1712

If z is the same as ui[j], we increment j by 1 and1713

check if j > |ui| and, if so, set i to 0 and j to 11714

If not, we set x to v1715

Once x is v, r can simply receive all remaining messages in any order.1716

The described FSM can be used for r because it reliably checks whether a presented sequence1717

of indices and words belongs to tile set u or v. It can do so because C≈(L(G(u, 0)))⇓Σr
∩1718

C≈(L(G(v, 0)))⇓Σr
= ∅ by assumption.1719

We prove ⇒2 by contraposition. Suppose the MPCP instance has a solution. Let i1, . . .,1720

ik be a non-empty sequence of indices such that ui1ui2 · · ·uik = vi1vi2 · · · vik and i1 = 1. It is1721

easy to see that1722

wx := r / p?i1r / q?[xi1 ]. · · · . r / p?ik. r / q?[xik ]. r / p?d. r / q?d ∈ L(G(x, 0))⇓Σr
for x ∈ {u, v}.1723

By definition of ≈, we can re-arrange the previous sequences such that1724

r/p?i1. · · · . r/p?ik. r/q?[xi1 ]. · · · . r/q?[xik ]. r/p?d. r/q?d ∈ C≈(L(G(x, 0)))⇓Σr
for x ∈ {u, v}.1725

Because i1, . . . , ik is a solution to the instance of MPCP, it holds that1726

r / q?[ui1 ]. · · · . r / q?[uik ] = r / q?[vi1 ]. · · · . r / q?[vik ]1727

and, thus,1728

r / p?i1. · · · . r / p?ik. r / q?[ui1 ]. · · · . r / q?[uik ]. r / p?d. r / q?d is in C≈(L(G(v, 0)))⇓Σr
.1729

This shows that C≈(L(G(u, 0)))⇓Σr
∩ C≈(L(G(v, 0)))⇓Σr

6= ∅.1730
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Lastly, we prove ⇐2. We know that the MPCP instance has no solution. Thus, there can-1731

not be a non-empty sequence of indices i1, i2, . . . , ik such that ui1ui2 · · ·uik = vi1vi2 · · · vik and1732

i1 = 1. For any possible word wu ∈ C≈(L(G(u, 0)))⇓Σr
and word wv ∈ C≈(L(G(v, 0)))⇓Σr

.1733

We consider the sequence of receive events wx⇓r/p?_ with sender p and the sequence1734

of messages wx⇓r/q?_ from q for x ∈ {u, v}. The intra-role indistinguishability relation ≈1735

allows to reorder events of both but for a non-empty intersection of both sets, we would still1736

need to find a word wu and wv such that1737

wu⇓r/p?_ = wv⇓r/p?_ and wu⇓r/q?_ = wv⇓r/q?_.1738

However, G(x, 0) for x ∈ {u, v} is constructed in a way that this is only possible if the MPCP1739

instance has a solution. Therefore, the intersection is empty which proves our claim. J1740
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