
Decidable Inductive Invariants for
Verification of Cryptographic Protocols

with Unbounded Sessions

Felix M. Stutz

1st August 2019

Master Thesis

University of Saarland

Department of Computer Science

First reviewer Prof. Derek Dreyer, PhD
Second reviewer Prof. Philippa Gardner, PhD
Supervisor Emanuele D’Osualdo, PhD

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used any
other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit als Druckversion in die Bib-
liothek der Informatik aufgenommen und damit veröffentlicht wird. Ich widerspreche der
Veröffentlichung in elektronischer Form.

Declaration of Consent

I agree to make the printed version of my thesis accessible to the public by having it added to
the library of the Computer Science Department. I disagree to make the electronic version
accessible to the public.

Saarbrücken, den 01. August 2019

Felix M. Stutz

Abstract

Cryptographic protocols are distributed programs that are designed to establish secure com-
munication using an insecure channel. The need for secure communication ranges from in-
ternet banking over medical devices to e-voting. Failure of this kind of systems does have
immense financial and societal consequences. Over the last decades, there has been efforts to
apply formal methods to the design and analysis of cryptographic protocols. In general, veri-
fication of cryptographic protocols is undecidable and hence there are different approaches
to remedy this obstacle. On the one hand, bounding the number of sessions renders many
verification problems decidable. On the other hand, there is actually need to prove cor-
rectness in the presence of an unbounded number of sessions. Most approaches targetting
this problem suffer from over-approximations and incompleteness of their algorithms as a
consequence of dealing with an undecidable problem. Moreover, these approaches lack of a
characterisation of protocols for which a precise and terminating analysis is guaranteed.

This thesis is part of a systematic study to understand the structure of cryptographic
protocols with an unbounded number of sessions/nonces. To this end, we develop a theory of
decidable inductive invariants for the rich class of depth-bounded protocols. While protocols
are modelled in a variant of the π-calculus, we present a generic intruder model whose
requirements are given as a set of axioms.

First, we prove that this generalised version of depth-bounded protocols admits a post-
effective completion. This includes a sound and complete finite representation of downward-
closed sets of configurations, a way to decide inclusion of two such sets of configurations
based on their finite representation as well as a symbolic version of a post-operator that
computes all successors — given a finite representation of a set of configurations.

Second, we have implemented a proof-of-concept prototype tool which exemplifies our
approach using an intruder model for symmetric encryption. Due to the high complexity of
the algorithmics, we also present various algorithmic aspects which are employed in the tool
to make it scale. This includes a coarse variant of widening to infer invariants of protocols
automatically.

The benchmarks on toy protocols seem promising in the sense that our invariants can
be inferred and proven correct automatically in a performance range from seconds to a few
minutes. In the future, our methodology of over-approximating the reachable state space of
a cryptographic protocols could be incorporated into other approaches to prune the state
space to be considered for their verification techniques. Benefits could range from speeding
up current analyses to rendering the verification of new properties feasible.

3

Acknowledgements

A number of people made this thesis possible and I am obliged to all of them.
First, I would like to thank my supervisor Emanuele D’Osualdo. He has been excellent

in giving me the opportunity to pursue my own ideas while providing constructive feedback
and indicating possible new directions when needed. I highly appreciate his extra-ordinary
approach to research in theoretical computer science that combines interesting theoretical
problems with practical applications. I am proud to be taught by such a great teacher.

I am also grateful to Prof. Philippa Gardner for her advice and unwavering support in all
matters. This thesis was conducted during a research visit at Imperial College London which
has been made possible by her and Prof. Derek Dreyer who agreed on officially supervising
my thesis.

I acknowledge the special funding I received by the “Evangelischen Studienwerk - Villigst”
for this research visit which was enabled by Prof. Gerd Smolka. I am thankful for the support
of “Studienstiftung des Deutschen Volkes”, “International Max Planck Research School -
Computer Science” and “Evangelisches Studienwerk - Villigst” for supporting my (master)
studies in various ways.

Meiner Familie danke ich für ihre Unterstützung, die es mir ermöglicht hat, meinen
eigenen Weg zu finden und mir geholfen hat, so weit zu kommen. Insbesondere bin ich
froh, dass meine Schwester und meine Mutter, mein Vater mit meiner Stiefmutter und
meine Großeltern mich in London besucht haben. Eure Besuche haben immer wieder für
das nötige Maß an Zerstreuung gesorgt, das auch nötig war, um produktiver und effizienter
forschen zu können.

Mein tiefster Dank gilt jedoch meiner Freundin Laura Neuheisel. Deine ungebrochene
Unterstützung und Geduld haben maßgeblich dazu beigetragen, was ich erreicht habe. Deine
Gabe, mich in jeder Situation aufzumuntern, ist unbeschreiblich und zu wissen, dass Du nie
den Glauben an mich verlieren wirst, bestärkt mich immer wieder aufs Neue.

5

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 The Setting . 10
1.3 Our Approach and Security Properties . 11
1.4 Related Work . 11
1.5 Contributions . 13
1.6 Comparison with Related Work . 15
1.7 Outline . 15
1.8 Attribution . 16

2 Formal Models 17
2.1 Intruder Models . 17
2.2 A Calculus for Cryptographic Protocols . 19
2.3 Depth-Bounded Protocols . 24

3 Ideal Completions for Security Protocols 27
3.1 Downward-closed Invariants and Security Properties 27
3.2 Depth-Bounded Processes are Well-Quasi-Ordered 30
3.3 Limits and Ideal Decompositions . 32
3.4 Decidability of Inclusion . 34
3.5 Computing Post-Hat . 44
3.6 Invariant for Example 2 . 47

4 Algorithmic Aspects 49
4.1 Incorporation Check . 49
4.2 Irreducible Knowledge . 52
4.3 Pattern Matching . 55
4.4 Finding Candidates for Invariants . 66
4.5 Encoding for SMT-Solver . 70
4.6 Tight Form . 75

5 Evaluation 81
5.1 Benchmarks . 81
5.2 Otway-Rees Protocol . 82

7

8 CONTENTS

6 Related Work 85
6.1 Invariants . 85
6.2 Bounded Number of Sessions . 86
6.3 Unbounded Number of Sessions . 87

7 Conclusion 89
7.1 Summary . 89
7.2 Future Work . 90

List of Figures 93

List of Tables 93

Bibliography 95

Appendix A 99
A.1 Proof that Forest Encoding Preserves vkn . 99
A.2 Properties of Knowledge . 99
A.3 Properties of vkn . 100
A.4 Solving the Example in the Introduction . 100

Chapter 1

Introduction

1.1 Motivation

The goal of this thesis is the development of sound and complete theoretical foundations for
formal and automatic verification of security protocols.

All communications on the Internet are based on protocols that determine the way infor-
mation shall be exchanged between two or more parties. Security protocols are distributed
programs that establish secure connections over insecure channels between participants of
a protocol by using cryptography. In times of e-voting, internet banking and block-chain,
secure communication is crucial and security protocols are employed everywhere. Failure
of these systems does not only have tremendous financial but also societal consequences.
Unfortunately, it is routine to discover new flaws in the design of deployed protocols. Sur-
prisingly, there is a range of these flaws that do not require the underlying cryptography to
break but simply exploit their misuse. For instance, the Needham-Schroeder protocol was
found vulnerable in 1995 — 17 years after publication [Low95].

An Easy Example Let us consider an example illustrating the idea of protocols. It also
exemplifies a possible attack. Suppose you want to send a parcel to a friend of yours and
the content shall be secret, so only you and her should know the parcel’s content. Both of
you are given locks and the respective keys to these locks but you both do not share a pair
of lock and key: you do not have a lock to which she has the key and neither vice versa.
There is a public post service that cannot be trusted. Before sending the parcel you may
have agreed on the following procedure where you are denoted by B and your friend by A.

• You lock the parcel with one of your locks LB and send it to A.

• Your friend A receives the parcel and applies her own lock LA to it so that the parcel
is locked twice. The parcel is sent back to you.

• You receive the parcel, which you cannot open, but you unlock your lock LB and send
it back to A.

• Your friend receives a parcel that is only locked with LA so that she can open it.

At first, this sounds like a reasonable approach but in fact it is not. Suppose the compromised
post service also knows the steps of your protocol. Then, the intruder can apply his own
lock LI instead of LA. The two locks look indistinguishable to you. You unlock your lock
LB in the next step and the intruder is actually the only one to open the parcel as it is only

9

10 CHAPTER 1. INTRODUCTION

locked by LI . Note that we have not required any lock to be broken but the way keys and
locks have been used is flawed.

In this thesis, we devise algorithms to automatically and systematically prove the absence
of such flaws.

1.2 The Setting

There are two major models that are considered in the context of cryptographic protocols
and messages in particular: the computational and the symbolic model [Bla16]. In the
computational model, messages are considered to be bitstrings and hence constructors are
functions from bitstrings to bitstrings. While the computational model is good to verify
the primitives, it is difficult to handle their use in a full protocol. Therefore, it is usually
assumed that the primitives have been separately proven correct, with the computational
model for instance, and the symbolic model then allows to reason about the use of primitives
in an algebraic way. From this perspective, messages can be built using (basic) terms and
constructors which can be applied to arbitrary terms. For instance, one can apply a two-ary
encryption constructor that encrypts a message M with a key K: e(M)K . With the use of
equivalence relations, e.g. =E , one can model the possibility to obtain the original message
M by decrypting with K: d(e(M)K)K =E M .

In the symbolic model, the intruder’s capabilities are formalised with the so-called Dolev-
Yao intruder model. While a Dolev-Yao intruder cannot break the cryptographic primitives,
it can intercept any message which is sent by the participants of a protocol. It can also
drop messages and thereby prevent a message to reach its intended destination. So the
intruder can overhear any communication and use the obtained knowledge to crypto-analyse,
e.g. decrypt a message for which the key is known, and construct messages consisting of the
obtained knowledge or freshly forged basic names, the ground terms of messages.

We will model protocols in a variant of the π-calculus. By its nature, this will be Turing-
complete and hence a lot of security problems become undecidable. There are three main
sources of infinity when considering cryptographic protocols:

• size of messages

• number of sessions/nonces

• arbitrary interference between sessions

A nonce is an unguessable, unique random string of bits that can be used as fresh encryption
key or as an ID to stamp a message. It is straightforward to see that an unbounded size
of messages easily leads to Turing-completeness and hence we bound the size of messages.
This is a common restriction for automated approaches.

Let us consider secrecy as a first basic security property we will be able to verify. Secrecy
of a message M can be thought of as the fact that M is never leaked (to the intruder).
Considering secrecy of M , one can either try to find an attack, i.e. a scenario where M is
leaked, or try to verify that no attack exists, i.e. prove that there is no scenario in which M
is leaked. Proving that an attack exists is simpler than verifying the absence of attacks since
a concrete attack will only exploit a bounded number of sessions. Deciding non-secrecy for
a bounded number of sessions is indeed NP-complete [RT01, CCZ10]. So for non-secrecy,
considering a bounded number of sessions suffices.

In contrast, to prove secrecy restricting to a bounded number of sessions would severely
limit the generality of the verification result. It would potentially cease to hold in the realistic

1.3. OUR APPROACH AND SECURITY PROPERTIES 11

scenario of unbounded number of sessions/nonces. Most (internet) security protocols are
not designed to terminate — for instance banking applications are supposed to provide
service to many clients at the same time and for an unspecified amount of time — hence
it is not realistic to restrict verification results to a bounded number of sessions. On the
one hand, our goal is a theory that supports unbounded number of sessions. On the other
hand, we want to have a complete and sound theory. To this end, we have to restrict the
class of supported protocols since the problem is undecidable in general. We will generalise
the fragment of depth-bounded protocols that was firstly introduced in [DOT17] for which
decidability of secrecy was proven. Depth-boundedness is a semantic condition on the use
of nonces. It does not prohibit the use of unboundedly many nonces in general but restricts
to render the problems we consider decidable. The details will be presented in Section 2.3.
Other known decidable fragments use syntactic conditions on the use of nonces, e.g. the ones
presented in [CCD15, Frö15].

In this project, we devise algorithms that can prove security properties without the
requirement of bounding the number of sessions or nonces.

1.3 Our Approach and Security Properties

We design methods to prove properties of a protocol by automatically constructing inductive
invariants. Intuitively, an invariant is a property that always holds. In the setting of
protocols, a property is an invariant if it holds for every possible reachable configuration of
the protocol. Hence, an invariant can be considered to be a set of configurations that over-
approximates the reachable state space of a protocol in presence of an intruder. An invariant
is inductive if every configuration that is obtained by taking one step from a configuration
in the invariant, is again in the invariant. In other words, an inductive invariant is closed
under taking one step (and hence making a finite number of steps).

We will discuss the building blocks for our theory in Section 1.5 and focus on possible
applications. Invariants can either directly entail properties like secrecy or be part of a chain
of arguments proving more involved properties like trace or equivalence properties.

A trace property is a property of a, possibly dishonest, execution of a protocol. An
instance of trace property is the fact that in every possible run of the protocol a server
authenticates the identity of an honest principal of the protocol A. An equivalence property
[CCD13] considers two traces of a protocol and compares them. For instance, the intruder
should not be able to distinguish whether two people have voted for the same party in an
election by comparing the two traces produced by the two vote casts.

In this thesis, we will focus on invariant properties, keeping in mind that, in general,
complex security properties are often proven by establishing a hierarchy of increasingly
involved invariants. For instance, the guarantee that one cannot distinguish whether two
people have voted for the same party may hinge on secrecy of the keys used to transfer
their vote, which is an invariant. Hence, our theory of invariants can provide important
intermediate facts that are needed for a proof.

1.4 Related Work

The application of formal methods to cryptographic protocols has been quite successful.
A number of tools have been deployed that are dedicated to catch bugs especially in early
design phases. We briefly survey three major approaches to verification of cryptographic
protocols in the symbolic model.

12 CHAPTER 1. INTRODUCTION

1.4.1 (Manual) Invariants

Both, [Mcl95] and [Pau98] have pioneered the use of invariants for verification of crypto-
graphic protocols. However, their approaches are not fully automated, in particular the
process of inferring the invariants is done manually.

In [Mcl95], protocols and security properties are modelled as standard linear-time tem-
poral logic. Besides the common model checking techniques that apply, they propose to
strengthen the formulas of security properties so that they become (inductive) invariants.

In [Pau98], they establish proof systems, mechanised in Isabelle/HOL, to prove security
properties. One first models the protocol as sequence of communication events. A sequence
of events forms a trace and proving a security property is done by induction on these traces.
One starts by proving that the fact holds for the empty trace and it remains to prove
the claim for doing one step starting from an arbitrary trace. The statements and proofs
have to be designed manually while the correctness of the proofs can be checked by the
theorem prover Isabelle. Proving a complex security property comprises proofs of various
intermediate facts which are combined to obtain the goal. One can also assume known
properties which have been proven with other methods. Building upon this, one can for
instance prove that some event A always precedes event B provided that the key K remains
secret in any possible trace.

We now go back to the question how to deal with the different sources of infinity. As
explained before, the sources of infinity easily lead to Turing-complete computational models.
We hence want to distinguish two different kinds of approaches: the ones bounding the
number of sessions and the ones not bounding the number of sessions.

1.4.2 Automatic Tools for Bounded Number of Sessions

Bounding the number of sessions renders a lot of security problems decidable. However,
this decidability comes at the price of missing possible attacks. There are several dedi-
cated tools for automated protocol analysis (e.g. DEEPSEC [CKR18], AVISPA [ABB+05],
SPEC [TNH16], AKISS [CCCK16]) under a given bound on the number of sessions. Most of
them rely on different flavours of model checking techniques. For a more detailed overview,
we refer to Section 6.2.

1.4.3 Semi-Automatic Tools for Unbounded Number of Sessions

We compare to the approaches of three tools supporting an unbounded number of sessions:
Tamarin, ProVerif and Maude-NPA. We summarise the approaches of ProVerif and Tamarin
and deliberately omit Maude-NPA since the support of unboundedness is inspired by ideas
of ProVerif [Bla16]. Moreover, we briefly hint at the use of type systems for verification of
cryptographic protocols.

ProVerif In ProVerif [Bla16], protocols are modelled in a variant of the π-calculus. They
are first translated to a set of Horn clauses. In order to handle the infinite state space, they
apply approximations during the translation. A security property can then be converted to
a derivability query on this set of Horn clauses. If the query is not derivable, the security
property holds. If it is, there might be an attack. There might be spurious attacks in the
sense that the query was derivable due to approximations. In the latter case, the result
amounts to a semi-decision procedure.

1.5. CONTRIBUTIONS 13

Tamarin In Tamarin [MSCB13], protocols are modelled as multiset rewriting systems.
Security properties were originally modelled as temporal first-order logic formulas. Based on
this representation, trace properties could be proven. Later on, the mechanism was extended
to equivalence properties using ideas from ProVerif. Note that there is a translation from
protocols that are modelled in a variant of the π-calculus to the encoding using multiset
rewriting systems [KK14]. A special constraint solving technique checks whether the security
property, given as temporal first-order logic formula, holds. The process might require
interaction by the user who can give helper lemmas to guide the proofs.

Type Systems One can also use type systems to verify cryptographic protocols as done
in [DKSH11, CCD15, CGLM17]. Usually types are used to annotate and generalise safe us-
ages of cryptographic primitives. Pursuing this idea, verification of cryptographic protocols
is reduced to type checking which can be efficiently solved.

1.5 Contributions

Our developments are based on [DOT17]. Their class of depth-bounded protocols admits
infinite state space for protocols and the use of an unbounded number of new names in a well-
behaved way that renders the verification problems we consider decidable. The decidability
result in [DOT17] was obtained by instantiating a backward search, i.e. starting from a vi-
olation of the property to prove, one tries to reach the initial configuration by a backwards
search. Whilst being reasonable for a decidability result, the algorithm does not scale in prac-
tice. Forward search approaches are known to scale better in practice but require a deeper
understanding of the structure of computation. We unravel the structure of depth-bounded
computation by showing that depth-bounded protocols are a completion-post-effective class
of well-structured transition systems [BFM18]. This requires the development of non-trivial
theory.

We want to automate the check whether a set of configurations I of a protocol with
initial configuration P0 is an inductive invariant. That is, checking P0 ∈ I and whether the
inclusion post(I) ⊆ I holds where post(I) contains all successors of configurations in I. We
need different ingredients to devise algorithms to do this automatically: finite representations
of invariants, a symbolic version of post(-) and an algorithm to check inclusion.

Finite Representations Since we deal with an unbounded number of sessions, it is not
straightforward to represent a set of configurations of a protocol. We first define a class of
expressions called “limits”. For example, let L be a limit representing the configurations in I,
which is denoted by JLK = I. We prove that they are sound and complete for representing
possibly infinite (downward-closed) sets of configurations of depth-bounded protocols. We
will show that this enables the representation of non-trivial security properties — like secrecy
for instance.

Symbolic Post Given such a finite representation L for I, we want to check whether I
is an inductive invariant. We have to verify that every successor of a configuration in I,
P ∈ post(I), is contained in the invariant. As the set of configurations can be infinite, there
might be an infinite number of successors. We therefore define a symbolic version of post(-),
denoted by p̂ost(-), that computes a finite number of sets of successor configurations that
are represented as limits: p̂ost(L) = {L0, · · · , Ln} iff post(JLK) =

⋃n
i=0JLiK.

14 CHAPTER 1. INTRODUCTION

Inclusion Check Given the finite number of successor sets as limits L0, · · · , Ln, we check
for each limit whether it is included in the invariant: ∀1 ≤ j ≤ n : JLjK ⊆ I = JLK. This
check is also non-trivial as both sets represent an infinite number of configurations. We
will present a characterisation of inclusion of two limits. This leads directly to a recursive
algorithm to check inclusion.

The algorithms solving the last two challenges are the major theoretical contributions.

All in all, the contributions of this thesis are:

1. a theory of sound and complete downward-closed invariants for the class of depth-
bounded protocols

2. a (forward) verification procedure to check inductivity

3. a widening algorithm that can (heuristically) infer inductive invariants

4. the development of techniques to make the algorithms practicable as well as a prototype
implementation.

All of these contributions have been formally proven sound.

Widening Verifying a (basic) security property of a cryptographic protocol using our
method requires two steps. First, we need to find a candidate for an inductive invariant L.
Second, we apply our algorithms to check if L represents an inductive invariant that implies
the desired security property. To automate the first step, we will present an algorithm to
infer invariants which is a form of widening in abstract interpretation.

Invariants as Certificates One can consider the second step of the procedure, i.e. the
one when inductivity and the property are checked, as a certification process. Given the
finite representation of an invariant, its inductivity as well as whether the security property
holds can be independently checked. Hence, limits can act as correctness certificates for
protocols.

Depth-Bounded Concurrent Systems We model depth-bounded protocols in a variant
of the π-calculus. In contrast to variants of the pure π-calculus, i.e. the ones not supporting
cryptographic primitives, our model is parametric on an active intruder model. Our tech-
niques can be applied to the simpler case of the pure π-calculus— yielding new and more
direct algorithms to verify depth-bounded concurrent systems, compared to e.g. [WZH10].

Prototype Implementation We implemented a proof-of-concept prototype that imple-
ments symmetric encryption and there are plans to extend it to more cryptographic primi-
tives that are supported by the generic intruder model, e.g. asymmetric encryption, hashing
and signatures. Even though the theory is direct to implement, we will present different
techniques that can be applied to lower the computational effort. These range from prepro-
cessing checks to make an invariant less redundant to techniques generating possible pattern
matchings and sound but incomplete simplifications of the inclusion check. Overall, the case
study shows that the approach seems to be promising to scale up to realistic protocols.

1.6. COMPARISON WITH RELATED WORK 15

1.6 Comparison with Related Work

We want to briefly explain in which ways our approach is different to the related work in
Section 1.4 and hint at possibilities how our methodology could be used in their approaches.

For methods in which invariants have to be designed manually, we can provide means to
automatically infer invariants. These can then be used as intermediate facts to prove more
complex security properties as explained before.

In contrast to all approaches assuming a bounded number of sessions, our verification
results will also be valid in the presence of an unbounded number of sessions. However, many
of these tools supply efficient algorithms to reason about cryptographic primitives. In our
development, we axiomatise the intruder model and consider the cryptographic primitives as
blackbox. Therefore, the techniques used to handle algebraic properties of primitives might
be useful for general and efficient implementations of our approach.

The tools that can handle an unbounded number of sessions typically need to use in-
complete over-approximations. Hence, the model might over-approximate the possible be-
haviour of the actual protocol. It is unclear how to generalise the class of protocols for which
a (precise) answer can be given. Moreover, they are not guaranteed to terminate with an
answer on all protocols. For ProVerif, it was proven that the procedure terminates for the
syntactic class of tagged protocols that are shown to be incomparable to the fragment of
depth-bounded protocols in [DOT17]. Our focus is to start a systematic study by establish-
ing the algorithmics for the class of depth-bounded protocols so that the supported class
of protocols can be characterised from the beginning. Proving more complex security prop-
erties could become more efficient as the state space to consider for a proof is pruned. As
invariants over-approximate the reachable state space of a protocol, this does not weaken the
verification result. In Tamarin, this could mediate the obstacle of providing helper lemmas
to some extent for instance.

In contrast to our approach, type checking is working on a rather syntactic level and it
is not straightforward to characterise the supported class of protocols. We speculate that
our developments could be used to define an expressive class of constraints, which can be
integrated in type systems.

1.7 Outline

The remainder of this thesis is structured as follows.
In Chapter 2, we introduce basic terminology and the formal models. First, we give

and motivate the axiomatisation for the intruder models. Second, we introduce the crypto-
graphic π-calculus, in which we model the intruder’s capabilities in the reduction semantics.
Moreover, we define the class of depth-bounded protocols.

Chapter 3 is the place where we establish the theory of ideals and instantiate the ideal
completions framework. To start with, we present possible security properties that are
supported directly and explain that invariants can be used in a larger context. We show
that depth-bounded processes form a well quasi order for a notion of configuration embedding
we define. This forms the basis to present the solutions to the three ingredients to check
inductiveness: finite representations, inclusion check and symbolic post-operator.

From a theoretic point of view, the results in Chapter 3 yield a direct verification algo-
rithm. However, a practical implementation requires the development of further techniques
which we present in Chapter 4. We start with a simplified inclusion check that can be
used as a first indicator but is incomplete. We explain how knowledge can be handled
algorithmically for the case of symmetric encryption and hint at possible generalisations.

16 CHAPTER 1. INTRODUCTION

This representation of knowledge is used for the pattern matching mechanism for which we
present a neat way to generate all possible pattern matches. Then, we present a way to
infer invariants automatically. We also discuss some specific related work targetting similar
problems at this point. At last, we show how one could generalise structural congruence for
limits in order to obtain less redundant representations of configurations.

In Chapter 5, we give further details of the implementation and a benchmark suite. The
explanation of one of the examples in depth concludes the evaluation.

Chapter 6 is dedicated to related work. After a brief discussion of tools supporting a
bounded number of sessions, we explain the ideas behind ProVerif and Tamarin as they can
handle an unbounded number of sessions. We also hint at possible ways to incorporate our
approach into these tools.

In Chapter 7, we summarise our results and give possible directions for future work.

1.8 Attribution

This thesis is mostly based on the technical report [DS19] which is the result of a collabo-
ration with Emanuele D’Osualdo. As a guideline, I will explicitly cite [DS19] in case this
part was mostly developed before I joined the project. Our work [DS19] is dedicated to
establishing the algorithmics for the decidable fragment proposed in [DOT17]. While the
calculus for cryptographic protocols has already been presented in [DOT17], we extended
the intruder model to a generic axiomatisation and established the theory for a forward
search approach. Chapter 4 is not part of [DS19].

Chapter 2

Formal Models

In this thesis, security protocols are formalised by a variant of the Applied π-calculus. We
axiomatise the intruder model instead of giving one specific intruder model. Hence, our
approach can be used for any intruder model satisfying these axioms. For instance, the
deduction system introduced in [DOT17] is such an intruder model and will be used for
examples.

2.1 Intruder Models

We treat cryptographic primitives algebraically as common in Dolev-Yao intruder mod-
els [DY83]. To this end, let N be an enumerable set of names a, b, · · · ∈ N and let the
signature Σ be a finite set of constructors, i.e. symbols f with arity ar(f) ∈ N. Names are
used to model data, nonces, and encryption keys in an abstract way while constructors can
be used to model encryption for instance. We summarise these constructed messages and
various measures on them.

Definition 1 (Messages over Σ, their Size and Names). The set of messages over Σ is the
smallest set MΣ that contains all names and is closed under constructors in Σ:

N ⊆MΣ and

f(M1, . . . ,Mn) ∈MΣ if f ∈ Σ with ar(f) = n and M1, . . . ,Mn ∈MΣ.

The functions size : MΣ → N and names: MΣ →P(N) are defined as follows:

size(a) := 1 size(f(M1, . . . ,Mn)) := 1 + max {size(M1), . . . , size(Mn)}
names(a) := {a} names(f(M1, . . . ,Mn)) := names(M1) ∪ . . . ∪ names(Mn)

Given X ⊆ N and s ∈ N, we define MΣ,X
s := {M ∈MΣ | names(M) ⊆ X, size(M) ≤ s}. We

will omit Σ or X when irrelevant or clear from the context.

We write KΣ for the set of finite sets of messages, KΣ := Pf (MΣ). We might also refer
to subsets of the latter as knowledge bases and will write Γ,Γ′ for Γ ∪ Γ′ while Γ,M stands
for Γ ∪ {M}.

The calculus for protocols, which will be introduced later in this chapter, will make use
of a pattern matching mechanism for communication. There, names may be substituted for
arbitrary messages which is the reason to introduce this concept for the axiomatisation of
intruder models.

17

18 CHAPTER 2. FORMAL MODELS

Definition 2 (Substitutions and Renamings). A substitution is a finite partial function
θ : N ⇀ MΣ. For the substitution with θ(xi) = Mi for all 1 ≤ i ≤ n, we write θ =

[M1/x1, . . . , Mn/xn] which is often abbreviated with [~M/~x].
We write Mθ for the application of substitution θ to the message M , and lift the notation

to sets of messages in the obvious way: Γθ := {Mθ | M ∈ Γ}. A substitution θ is called a
renaming of X ⊆ N if it is defined on X, θ is injective, and θ(X) ⊆ N .

Equipped with these formalisms and notations, we present the axioms an intruder model
has to satisfy to be applicable for the techniques presented in this thesis.

Definition 3 (Intruder Model). A derivability relation for a signature Σ, is a relation
` ⊆ KΣ ×MΣ. The pair I = (Σ,`) is an (effective) intruder model if ` is a (decidable)
derivability relation for Σ, and for all M,N ∈MΣ, Γ,Γ′ ∈ KΣ, a ∈ N :

M `M (Id)

Γ ⊆ Γ′ ∧ Γ `M =⇒ Γ′ `M (Mon)

Γ `M ∧ Γ,M ` N =⇒ Γ ` N (Cut)

M1, . . . ,Mn ` f(M1, . . . ,Mn) for every f ∈ Σ with ar(f) = n (Constr)

Γ `M =⇒ names(M) ⊆ names(Γ) (Locality)

Γθ `Mθ ⇐⇒ Γ `M for any θ renaming of names(Γ) (Alpha)

Γ, a `M ∧ a 6∈ names(Γ,M) =⇒ Γ `M (Relevancy)

The knowledge ordering for I is the relation ≤kn ⊆ KΣ×KΣ such that Γ1 ≤kn Γ2 if and only
if ∀M ∈MΣ : Γ1 `M =⇒ Γ2 `M. We write Γ1 ∼kn Γ2 if Γ1 ≤kn Γ2 and Γ2 ≤kn Γ1.

Unless specified otherwise, we fix an arbitrary effective intruder model I for the remainder
of the thesis and may omit superscripts when clear from context.

Motivation for the Intruder Axioms The first three axioms formalise what intuitively
should hold for any deduction relation:

• Axiom (Id): everything in the knowledge base is known.

• Axiom (Mon): adding knowledge does not impede derivations that have been possible
before.

• Axiom (Cut): if something is derivable, we can add it to the knowledge base.

The (Constr) axiom guarantees that the intruder can construct messages using all construc-
tors. The (Locality) ensures that derivable messages can only contain names that are present
in the knowledge base, hence no new names can be created when deriving a message. The
(Alpha) provides soundness in presence of α-renaming, i.e. we can rename basic names.
With (Relevancy), we restrict the intruder only to introduce finitely many new names in
one protocol step.

Proposition 1. Given Γ1,Γ2 ∈ KΣ, Γ1 ≤kn Γ2 if and only if ∀M ∈ Γ1 : Γ2 ` M . As a
consequence, if ` is decidable, so is ≤kn.

Proof. The direction from right to left is straightforward as Γ1 ≤kn Γ2 and Γ1 `M for every
M ∈ Γ1.
For the implication, consider a proof tree for Γ1 ` N for some message N . We need to prove

2.2. A CALCULUS FOR CRYPTOGRAPHIC PROTOCOLS 19

M ∈ Γ

Γ `M
Id

Γ, (M,N),M,N `M ′

Γ, (M,N) `M ′
PL

Γ `M Γ ` N
Γ ` (M,N)

PR

Γ, e(M)K ` K Γ, e(M)K ,M,K ` N
Γ, e(M)K ` N

EL
Γ `M Γ ` K

Γ ` e(M)K
ER

Figure 2.1: Deduction rules for the derivability relation of Isy

that Γ2 ` N . We know that Γ2,Γ1 ` N by Mon. It holds that Γ2 `M for every M ∈ Γ1 by
assumption. Hence, we can apply Cut |Γ1| times and obtain Γ2 ` N .

By the axiomatisation of the intruder models and hence the derivability relations, we
consider the latter to be black box mechanisms. These may therefore range from rewriting
systems to deduction systems. For our examples, we adapt the notation of sequent calculi
from [TGD10] and define a deduction system for symmetric encryption.

Definition 4 (Symmetric Encryption). Let Σsy = {(·, ·), e(·)·} be a signature where (M,N)
pairs messages M and N , and e(M)N represents the message M encrypted with key N . The
intruder model for symmetric encryption is the model Isy = (Σsy,`) where ` is defined by
the deduction rules in Fig. 2.1.

Proposition 2. The model Σsy is an effective intruder model.

Proof. We have to show that every axiom of Definition 3 is satisfied by Σsy.

• Axiom (Id) is a direct consequence of Rule Id.

• Given some derivation Γ ` M , it is straightforward to construct a derivation for
Γ,Γ′ `M , which only uses messages from Γ. This entails Axiom (Mon).

• The admissibility of cut rule proven in [TGD10] implies Axiom (Cut).

• There are solely two constructors and hence Axiom (Constr) is given by Rules PR
and ER.

• Axiom (Alpha) holds as all rules are invariant under renamings.

• Axiom (Relevancy) is Lemma 4 in [DOT17] and can be proven by induction on the
depth of a derivation.

In every rule, premises solely consist of subterms of messages in the consequence, so
Γ `M is decidable.

2.2 A Calculus for Cryptographic Protocols

When modelling cryptographic primitives, it is common to deal with constructors and de-
structors for messages. But our running example for the intruder model as given in Defini-
tion 4 is restricted to constructors. This originates in the fact that we model “destruction”
by pattern matching in the calculus we formalise now.

20 CHAPTER 2. FORMAL MODELS

Definition 5 (Calculus for Cryptographic Protocols). Let Q be a finite signature of process
names. Each process name Q ∈ Q is associated with a fixed arity ar(Q) ∈ N. A protocol
specification consists of an initial process P and a finite set ∆ of definitions of the form
Q[x1, . . . , xn] := A, with ar(Q) = n, where the syntax of P and A follows the grammar:

P ::= 0 | νx.P | P ‖P | 〈M〉 | Q[~M] A ::= in(~x : M).P | A+A (actions)

An action in(~x : M).P consists of the input prefix ~x : M with its pattern M and the
continuation P . Pattern matching is formalised using substitutions of bound names to
messages and will be used in the reduction semantics.

We use the vector notation ~x = x1, . . . , xn for lists of pairwise distinct names and may
abuse notation by treating vectors as finite sets. The notation ν~x.P is a shorthand for
νx1. · · · νxn.P . The names ~x are bound in both ν~x.P and in(~x : M).P . We denote the set of
free names of a term P with fn(P) and the set of bound names with bn(P). As is standard,
α-equivalence can be used to rename bound names to fresh names without changing the
structure of a term. Therefore, we require, w.l.o.g., that fn(P) ∩ bn(P) = ∅. When nesting
restrictions ν~x.ν~y.P , we implicitly assume w.l.o.g. that ~x and ~y are disjoint.

The internal action τ is an abbreviation for in(x : x) for a fresh x.
Processes of the form Q[~a] are called process calls. We assume that there is at most

one definition for each Q ∈ Q and that for each definition Q[x1, . . . , xn] := A, it holds that
fn(A) ⊆ {x1, . . . , xn}. Process calls and processes of the form 〈M〉 are called sequential. If
Γ = {M1, . . . ,Mk} is a finite set of messages, then 〈Γ〉 := 〈M1〉 ‖ . . . ‖ 〈Mk〉.

A subterm Q of a term P is called active in P if it is not under a prefix. The pro-
cess 〈M〉 is called active message and is essentially a degenerate form of the notion of an
active substitution in the applied π-calculus [AF01], where we omit the domain of the sub-
stitution. Intuitively, an active message is a message output by a process that is known to
the environment and therefore also to the intruder.

The set P consists of all processes over an underlying signature Q. We define P 0 := 0
and Pn+1 := P ‖ Pn. The parallel composition P0 ‖ · · · ‖ Pn is denoted by

∏n
i=0Pi.

Let us outline the remainder of this section. First, we introduce structural congruence for
processes as is standard in order to talk about runtime configurations of protocol executions
and compare them. Second, we define the reduction semantics and hence explain how
these configurations can evolve. Third, we adapt structural congruence to obtain knowledge
congruence by incorporating the derivability relation of the intruder model.

Structural Congruence We start with the standard α-equivalence, denoted by
α
=. It is

the smallest congruence relation that satisfies νx.P
α
= νy.P [y/x] where y 6∈ fn(P). Structural

congruence, denoted by ≡, is the smallest congruence relation that respects α-equivalence,
is associative and commutative with respect to ‖ and + with 0 as the neutral element, and
satisfies the standard laws:

νa.0 ≡ 0 (Garbage)

νa.νb.P ≡ νb.νa.P (Exchange)

P ‖ νa.Q ≡ νa.(P ‖ Q) (if a 6∈ fn(P)) (Scope Extrusion)

All these rules do not modify messages which is the reason why α-equivalence is the only one
to change them. The axiom (Alpha) guarantees that α-equivalence preserves derivability.
Using ≡, we can get the configurations we are aiming for: every process P is congruent to
a process in standard form:

ν~x.
(
〈M1〉 ‖ · · · ‖ 〈Mm〉 ‖ Q1[~N1] ‖ · · · ‖ Qk[~Nk]

)
(SF)

2.2. A CALCULUS FOR CRYPTOGRAPHIC PROTOCOLS 21

where every name in ~x occurs free in some subterm, m, k ∈ N and Qi ∈ Q ∀1 ≤ i ≤ n. The
standard form of P , denoted by sf(P), is unique up to α-equivalence and commutativity of
parallel. Standard forms may be abbreviated by ν~x.(〈Γ〉 ‖ Q) where all the active messages
are collected in Γ, and Q is a parallel composition of process calls. We will abuse notation
and treat Q as a set of process calls, i.e. Qi[~Ni] ∈ Q.

When talking about messages of a protocol configuration, we refer to msg(P): Let sf(P)

be the expression (SF), we define msg(P) = {M1, . . . ,Mm} ∪
⋃n
i=1

~Ni. Thus msg(P) is the
set of messages appearing in a term. When m = 0, k = 0, ~x = ∅, the expression (SF) is 0.

These standard forms of shape ν~x.(〈Γ〉 ‖ Q) can be considered to be the runtime config-
urations. They represent the current state of the protocol at some point in time. We might
refer to Γ as knowledge base. All information contained in Γ is known to everyone, also
to the intruder. Q consists of single participants Q[~N] of the protocol with their private

knowledge ~N and local state Q. Let us now explain how these configurations can evolve and
how the intruder is modelled.

Reduction Semantics We restrict communication to a single insecure global channel. It
is easy to model multiple channels with a pair constructor and fresh names. However, all
messages sent on these channels will be public and contribute to the new knowledge base.
Firing an input action leads to a new local state of a participant and hence a modified
runtime configuration. We have two types of input prefixes: in(~x : M) and τ . To fire a
non-τ input prefix, the intruder needs to construct a message that matches the pattern M .
Note that this enables both legitimate and malicious transactions as the intruder can replay
genuine messages. Remember that τ -transitions are modelled by in(x : x) for a fresh x.
This is the reason why they can be fired at any time. As x is fresh, it does not occur in the
continuation, leading to the same runtime configuration no matter which name was input.

Prior to defining the reduction relation and the induced traces, we clarify some notation:
Q[~M] , A if Q[~x] := A′ ∈ ∆ and A

α
= A′[~M/~x], up to commutativity and associativity of

+.

Definition 6 (Reduction Semantics). The transition relation →∆ defines the semantics of
our calculus:

Q[~M] , in(~x : N).P ′ +A Γ, ~z ` N [~M ′/~x] ~z fresh

ν~a.(〈Γ〉 ‖ Q[~M] ‖ C)→∆ ν~a.ν~z.(〈Γ〉 ‖ 〈~z 〉 ‖ P ′[~M ′/~x] ‖ C)

P ≡ P ′ →∆ Q′ ≡ Q
P →∆ Q

With the set traces∆(P) := {Q0 · · ·Qn | P ≡kn Q0 →∆ · · · →∆ Qn}, we collect all the transi-
tion sequences from P under ∆. The set reach∆(P) := {Q | P →∗∆ Q} is the set of processes
reachable from P . For both, we may omit ∆ when it is clear from the context.

Because of (Relevancy), we can assume w.l.o.g. that ~z includes only names that appear

in ~M ′ in the first rule. Traces can be used to trace back how information and local states
evolved. With the set of reachable runtime configurations, we will be able to check that
objectionable behaviour will not occur.

We alluded to before that “destruction” is modelled by the pattern matching mechanism.
Considering the intruder model for symmetric encryption from Definition 4, this means that
decryption is done implicitly when firing an action. One problem is that general pattern
matching would enable a participant to obtain the key from an encrypted message: the
pattern in(x, k : e(x)k) even enables the participant to obtain both the key k and the plain-
text x. This is unreasonable power for the participants which is originated in a modelling
problem that can be solved by restricting pattern matching. Intuitively, one should be able

22 CHAPTER 2. FORMAL MODELS

to implement all patterns using the cryptographic primitives. This is why we restrict the
calculus to use implementable patterns.

Definition 7 (Implementable Patterns). Let ~x : M be a pattern and Z = names(M) \ ~x.
The pattern is implementable, if, for all substitutions θ : Z → M, we have Mθ,Zθ ` y for
all y ∈ ~x.

Note that Z represents all names the process call knows. Moreover, our decidability
results do not rely on implementable patterns. Implementability guarantees that the partic-
ipants of a protocol do not have more power than the intruder. For instance, in(x : e(x)k)
is not implementable.

Example 1 (Pattern for Isy). Consider the following process call definition for which we do
not specify the continuation:

Q[u,w] := in(y : e(e(y)z, e(z)w)u). · · ·

This pattern is implementable. The process call Q[u,w] knows u and w. Hence, one can
decrypt the message and obtain the pair (e(y)z, e(z)w). This can be split and one can
obtain z by decrypting with w. It remains to decrypt y with z. Formally, the set of known
names is Z = {u,w}. For implementability, we have to prove that (e(e(y)z, e(z)w)u)θ, Zθ ` y
for every substitution θ. As argued before, e(e(y)z, e(z)w)u, Z ` y and hence it holds for
θ = id. This suffices as Γ `M iff Γθ `Mθ holds for every substitution θ for the symmetric
intruder Isy.

Definition 8 (Induced Transition System). Given an initial process P and a set of defini-
tions ∆, which could be an initial protocol configuration, the reduction semantics induces
a transition system. The nodes representing different (congruence classes of) configurations
and a relation that indicates whether one can perform a step from one configuration to
another. The transition system of P is denoted by (P,→∆).

The evolution of a protocol is captured by traces and reachable configurations. For two
configurations, the set of process calls can be compared easily with set equality or inclusion.
For knowledge bases, consider two processes that are not structurally congruent:

〈(a, b)〉 ‖ Q[~a] 6≡ 〈(e(b)a, a) ‖ Q[~a].

Structural congruence does not capture that (a, b)〉 ∼kn (e(b)a, a). We incorporate the
intruder model by extending the structural congruence.

Knowledge Congruence Intuitively, knowledge congruence, denoted by P1 ≡kn P2, is the
smallest congruence that includes structural congruence ≡ and captures the intruder model
in the following way: 〈Γ1〉 ≡kn 〈Γ2〉 if Γ1 ∼kn Γ2. Formally, we characterise knowledge
congruence in the following way:

P1 ≡kn P2 ⇐⇒ sf(P1)
α
= ν~x.(〈Γ1〉 ‖ Q) ∧ sf(P2)

α
= ν~x.(〈Γ2〉 ‖ Q) ∧ Γ1 ∼kn Γ2.

Knowledge congruence partitions the set of all processes into congruence classes. The dis-
tinguishing feature of these is that for two processes in the same class, the intruder (and the
participants) cannot tell these two processes apart, neither by observing the future behaviour
nor by derivable knowledge. Formally, if P1 ≡kn P2 then the transitions systems (P1,→∆)
and (P2,→∆) are isomorphic. Since the transitions are indistinguishable, we incorporate

2.2. A CALCULUS FOR CRYPTOGRAPHIC PROTOCOLS 23

knowledge congruence into the reduction semantics and therefore add a third rule in the
style of the second one to the reduction semantics:

P ≡kn P
′ →∆ Q′ ≡kn Q

P →∆ Q

With knowledge congruence, we capture if two runtime configuration are the same in
terms of possible successors. We define a notion of “sub-configuration” for runtime config-
urations that captures whether the set of possible successors of one process is subsumed by
the one of some other process.

Definition 9 (Knowledge Embedding). The knowledge embedding relation P1 vkn P2 holds
if P1 ≡ ν~x.(〈Γ1〉 ‖ Q), P2 ≡ ν~x.ν~y.(〈Γ2〉 ‖ Q ‖ Q′) and Γ1 ≤kn Γ2.

The following proposition reflects the intuitive relation between vkn and ≡kn.

Proposition 3. P1 ≡kn P2 if and only if P1 vkn P2 and P2 vkn P1.

Proof. The direction from left to right follows immediately from the definition. For the
“if” direction, let us make precise what the order entails. Let sf(Pi)

α
= ν~xi.(〈Γi〉 ‖ Qi) for

i = 1, 2. From Definition 9, it is straightforward that

P1 vkn P2 iff Γ1 ≤kn Γ2, ~x2 = ~x1~y2 and Q2 = Q1 ‖ Q′2

for some ~y2 and some parallel composition of process calls Q′2 (which is unique up to com-
mutativity of ‖). In the same way,

P2 vkn P1 iff Γ2 ≤kn Γ1, ~x1 = ~x2~y1, and Q1 = Q2 ‖ Q′1

for some ~y1 and Q′1. Note that, by α-renaming, we can choose the names in both normal
forms in a way such that this correspondence is possible. This results in Γ1 ∼kn Γ2. Let us
consider the equations for names:

~x2 = ~x1~y2 and ~x1 = ~x2~y1 =⇒ ~x1 = ~x1~y2~y1

and hence |~y1| = |~y2| = 0. Similarly, |Q′1| = |Q′2| = 0 and hence ~x1 = ~x2 and Q1 = Q2.
Overall, this entails P1 ∼kn P2.

Theorem 2.1 (Lemma 11 from [DOT17]). Knowledge embedding is a simulation, i.e. for
all P , P ′ and Q, if P → Q and P vkn P

′ then there is a Q′ such that P ′ → Q′ and Q vkn Q
′.

Example 2. We present a first toy protocol, which can be used to establish a new session
key K between two participants A and B who both know the trusted server S.

(1) A→ S : NA, B
(2) S → B : e(K)(NA,KAS), e(K)KBS

(3) B → A : e(K)(NA,KAS), e(NB)K
(4) A→ B : e(NB)(K,K)

24 CHAPTER 2. FORMAL MODELS

The protocol can be encoded as follows:

S[a, b, kas, kbs] := in(na : (na, b)).νk.
(
〈e(k)kbs〉 ‖

〈
e(k)(na,kas)

〉
‖ S[a, b, kas, kbs]

)
A1[a, b, kas] := τ .νna.(〈(na, b)〉 ‖ A2[a, b, kas, na] ‖ A1[a, b, kas])

A2[a, b, kas, na] := in
(
k : e(k)(na,kas)

)
.A3[a, b, kas, k]

A3[a, b, kas, k] := in(nb : e(nb)k).〈e(nb)(k,k)〉
B1[a, b, kbs] := in(k : e(k)kbs).νnb.

(
〈e(nb)k〉 ‖ B2[a, b, kbs, nb, k] ‖ B1[a, b, kbs]

)
B2[a, b, kbs, nb, k] := in(e(nb)(k,k)).Secret[k]

Each principal is modelled by several process calls - each for one step. For instance,
A1[-],A2[-] and A3[-] model the three steps of A. We may also omit [-] in this example. Let
us assume to start with the following initial configuration:

P0 = νa, b, kas, kbs.(S[a, b, kas, kbs] ‖ A1[a, b, kas] ‖ B1[a, b, kbs] ‖ 〈a, b〉).

Let us explain an honest run of the protocol. The protocol is initiated by A1 that sends a
new nonce na to the server S. Since we assume one insecure channel, we do not annotate the
messages with the intended recipient. This does not restrict expressivity in general as we
can model channels with a pairing operator. The server receives na (or any other message
the intruder may generate). It generates a fresh key k and outputs it twice: first, encrypted
with kbs, the long-term key shared by B and S; second, encrypted with the pair (na, kas).
Note that it is possible to use non-atomic encryption keys. In the Alice&Bob-notation, both
these messages are sent to B of which it simply forwards the one intended for A. Due to
our general insecure message channel, we only model the reception of the message relevant
to B with B1 and can assume that the message intended for A will eventually be fired by
the reduction semantics (which also models the intruder). When B receives the new key k,
a new nonce nb is generated which is used to challenge A. Mastering this challenge amounts
to sending nb back but encrypted by (k, k). On reception of e(nb)(k,k), B is convinced that k
can be used as new session key which is modelled by Secret[k]. This process call ensures
that k is not derivable by the intruder in any run of the procotol. To this end, we assume
the definition Secret[k] := in(k).Leak[k] in which the continuation Leak[k] can only occur
if k can be derived. Hence, we can ensure that the session key k is safe to use if Leak[k]
does not occur in any reachable process.

2.3 Depth-Bounded Protocols

We generalise the definition of depth-bounded protocols, first introduced in [DOT17], by
incorporating the more general intruder model. Our goal is a sound and complete theory of
invariants for this class of protocols, which we achieve by the means of ideal completions as
presented in the next chapter.

Bounding Message Size The motivation for this class of protocols is the possibility to
reason about an unbounded number of sessions, new data etc. that is modelled with name
restrictions in our calculus. Nevertheless, we are dealing with a Turing-complete model
that renders all verification problems undecidable. Let us briefly recall the discussion from
[DOT17]. Roughly speaking, the problem can be reduced to the halting problem for two-
counter Minsky machines. Two-counter Minksy machines are Turing-complete and consist
of two counters which can be incremented, decremented and checked for zero. Intuitively,

2.3. DEPTH-BOUNDED PROTOCOLS 25

these two counters can be modelled by two messages of the form e(e(e(c0)c1)c2)··· whose
length is the current value of the counter. As common in the literature, we restrict the
message size by a bound s. Let Ss := {P ∈ P | ∀M ∈ msg(P) : size(M) ≤ s} be the set of
processes containing messages of size at most s. For some set A, we write A∗ for the set
of sequences of elements from A. The set of processes reachable from P while respecting
a size bound s is the set reachs∆(P) := {Q | P · · ·Q ∈ traces∆(P) ∩ S∗s}. Note that this
definition does not prohibit the use of bigger messages in the pattern matching but only
in the processes of a trace. In order to turn towards a decidable fragment of our calculus,
we restrict the size of messages. However, this does not suffice as there are ways to model
counters using messages of finite size [DOT17].

Definition 10 (Depth). The nesting of restrictions of a term is given by nestν : P→ N:

nestν(Q[~a]) := nestν(〈M〉) := nestν(0) := 0

nestν(νx.P) := 1 + nestν(P)

nestν(P ‖ Q) := max(nestν(P),nestν(Q)).

The depth of a term is defined as the minimal nesting of restrictions in its knowledge con-
gruence class, depth(P) := min {nestν(Q) | Q ≡kn P}.

We illustrate the meaning of Definition 10 and Lemma 1 with an example.

Example 3. P = νa, b, c.(〈a〉 ‖ 〈e(b)a〉 ‖ 〈e(c)b〉 ‖ 〈c〉) which has nestν(P) = 3. The process
P is knowledge-congruent to Q = (νa.〈a〉 ‖ νb.〈b〉 ‖ νc.〈c〉) which has nestν(Q) = 1; this
gives us depth(P) = nestν(Q) = 1. Although bn(Q) = {a, b, c}, by α-renaming all names to
x we obtain Q′ = (νx.〈x〉 ‖ νx.〈x〉 ‖ νx.〈x〉) which has the property |bn(Q′)| ≤ nestν(Q) ≤
depth(P).

Thinking of the syntax tree of a term, the nesting of restrictions determines the maximal
number of name restrictions on any path from the root to a leaf. By α-renaming, we can
reuse names in different branches which leads to the following observation.

Lemma 1 ([DOT17]). Every Q is α-equivalent to a process Q′ such that |bn(Q′)| ≤
nestν(Q).

More generally, Lemma 1 says that for a process of depth k, we can always find a
knowledge congruent process that uses at most k unique names, by reusing names in disjoint
scopes.

Let DXs,k := {P ∈ Ss | fn(P) ⊆ X,∃Q ∈ Ss : Q ≡kn P ∧ nestν(Q) ≤ k} be the set of pro-
cesses of depth at most k ∈ N, with free names in X, and messages not exceeding size s. The
set X solely determines the free names that might be present in processes in DXs,k. In our use
case, we start with a protocol specification, i.e. an initial process P0 for instance with its free
names fn(P0). The reduction semantics will never lead to omitting name restrictions at any
step. Hence, every reachable process P can only have free names that are already present
in P0: fn(P) ⊆ fn(P0). This is why we omit the superscript X in our context. Intuitively,
we call a protocol with its initial configuration P0 depth-bounded if its reachable state space
is included in Ds,k for some k.

Definition 11. For some s, k ∈ N, we say the process P is (s, k)-bounded (w.r.t. a finite set
∆ of definitions) if reachs∆(P) ⊆ Ds,k, i.e. from P only processes of depth at most k can be
reached, in traces respecting the size bound s.

26 CHAPTER 2. FORMAL MODELS

Note that the two bounds s and k are very different in nature. Bounding the size of
messages restricts the traces to be considered: this may result in ignoring some behaviour,
i.e. if it is only exhibited by using messages exceeding size s. When considering the rest of
the behaviour, we then check if all the reachable processes have depth at most k.

If so, the initial process is (s, k)-bounded. This definitions has two major implications for
our analysis. First, when a (s, k)-bounded process is considered, the analysis is only sound
with respect to bugs that can be triggered by messages that do not exceed the size bound s.
Second, checking whether an initial configuration is (s, k)-bounded cannot be done statically.
One the one hand, it suffices to provide a single (message size respecting) trace leading to
a process exceeding depth k to show that a configuration is not (s, k)-bounded. On the
other hand, proving (s, k)-boundedness requires a characterisation of the set of reachable
processes. In Section 3.1, we explain how our theory of invariants can be used to prove
boundedness.

Moreover, the depth-bound k and its existence depends on the bound on the message
size b.

Lemma 2 (Monotonicity of Existence of k). Let P ∈ P be a process and s1 ∈ N. Assume
P is not (s1, k)-bounded for any k ∈ N. Then, P is not (s2, k)-bounded for every s2 ∈ N
s.t. s2 ≥ s1 and any k ∈ N.

Proof. Let k ∈ N be any number. The fact that P is not (s, k)-bounded means that there
is a process P ′ ∈ reachs1∆ (P) such that depth(P ′) > k. Obviously, reachs1∆ (P) ⊆ reachs2∆ (P)
and hence, this witness can also be found when respecting the bigger size bound s2.

Example 4 (Depth-boundedness). In Section 3.6, we show that Example 2 is (3, 7)-bounded.

Example 5 (Encryption Oracle). Communication protocols frequently consist of two (or
more) parties who want to establish a secure way to communicate and a server, i.e. a party
trusted by both (or all) parties to facilitate this way. The latter might comprise a definition
of the following shape: E[k] := in(x : x).(〈e(x)k〉 ‖ E[k]). Typically, k is not known to
the intruder and x is a nonce. But this automatically leads to unboundedness if the size
bound s is chosen in a way so that x can match messages of size greater than 1. This is due to
the possibility to construct “encryption chains”: the intruder can inject messages (ci, ci+1)
for unboundedly many i, where ci are intruder-generated nonces. This is basically a type
confusion attack and leads to “encryption chains” of the form νk.νc1, . . . , cn.(〈e(c1, c2)k〉 ‖
〈e(c2, c3)k〉 ‖ . . . 〈e(cn−1, cn)k〉) that are part of the set of reachable configurations. While
every single message does not exceed s, the number of name restrictions needed in the
same scope can be arbitrarily high (and be chosen by the intruder). Hence, initial protocol
configurations are not (s, k)-bounded whenever s allows such encryption chains to evolve.

The pattern presented in this example can be usually modified or constrained to obtain
a bounded protocol. The first option exploits the fact that each honest participant of
the protocol and the server share a key with the server which can be used to guard the
communication and to modify the input action to in(x : e(x)e) for some key e. The second
option makes use of a refinement of the message size restriction we will discuss in Section 4.3
in detail. Intuitively, we will be more precise on the size bound assumptions by specifying
the bound on the message size for each pattern variable in an input action as introduced
in [DOT17]. Moreover, we briefly sketch ideas for a intruder model axiomatisation that can
handle the oracle pattern without these patches in Section 7.2.

Chapter 3

Ideal Completions for Security
Protocols

This chapter presents the main theoretical contributions of this thesis. Our main theoretical
contribution is the fact that the presented (s, k)-bounded protocols are a completion-post-
effective class of well-structured transition systems [BFM18]. Let us first outline the proce-
dure induced by this fact and possible applications to security properties. Afterwards, we
proceed with instantiating the ideal completions framework in detail and prove the results.

3.1 Downward-closed Invariants and Security Properties

The goal for verification of cryptographic protocols is to prove that a protocol P fulfils some
security requirement. These can range from secrecy to trace equivalence. No matter which
requirement is to be proven, it is common to establish intermediate results about executions
of protocols and combine them to achieve the overall goal. It is easy to see that such an
intermediate result might be the fact that some key k is always secret. This kind of property
is called invariant and is defined as follows:

Definition 12 (Invariant). An invariant I of P (under definitions ∆ and size constraint s)
is any set of processes that includes its reachable state space: reachs∆(P) ⊆ I.

Example 6. Let P be the initial configuration of a protocol so that the free name k is never
known to the intruder - in any execution of the protocol. The name k can be considered to
be some initial key for instance. Then, Sk := {Q | 〈k〉 6vkn Q} which is the set that contains
all processes in which k is not public is an invariant for P .

The invariant Sk is downward-closed by definition, as 〈k〉 6vkn Q andQ′ vkn Q entails that
〈k〉 6vkn Q

′. For our analysis, we will focus on the class of vkn-downward-closed invariants.

Definition 13 (Downward-closure and -closedness). Let X ⊆ P be a set of processes. The
vkn-downward-closure of X is defined as: X↓ := {Q | ∃P ∈ X : Q vkn P}. A set X is said
to be vkn-downward-closed if X = X↓.

The task we have to solve is the following: given an initial protocol configuration P and
a candidate for an invariant, i.e. a vkn-downward-closed set I, prove that reachs∆(P) ⊆ I.
Note that it equivalent to show that reachs∆(P)↓ ⊆ I. Since P is an initial configuration for
some protocol, reachs∆(P) consists of processes occurring in traces starting from P . Hence,

27

28 CHAPTER 3. IDEAL COMPLETIONS FOR SECURITY PROTOCOLS

we know that every possible successor of some P ′ ∈ reachs∆(P) is also in the latter set. This
presumes that the invariants we will be considering have some inductive characteristics.

Definition 14 (post(-) and Inductive Invariants). Let X ⊆ P be a set of processes. We
define the set of processes reachable in one step (respecting the message size bound s) from
processes in X to be: posts∆(X) := {Q′ | ∃Q ∈ X,Q→ Q′ ∈ Ss}. The set X is called
inductive if X ⊇ posts∆(X).

We cannot claim that all invariants are naturally inductive but we can restrict ourselves
to inductive invariants.

Lemma 3 (Inductive Invariants Sufficient). Let P ∈ P be some process and I some
vkn-downward-closed invariant such that I ⊇ reachs∆(P). Then, there is an inductive in-
variant I ′ ⊆ I such that I ′ ⊇ reachs∆(P).

Proof. The proof is straightforward. We can choose I ′ to be reachs∆(P)↓ which is downward-
closed and inductive by definition.

Our strategy to prove that reachs∆(P)↓ ⊆ I for some downward-closed invariant I consists
of two steps: Check that P ∈ I and that I is inductive. We need three ingredients for this
idea:

1. a finite representation of downward-closed sets that is recursively enumerable

2. means to decide inclusion of two downward-closed sets based on their representation

3. a symbolic version of post(−), i.e. given some finite representation of D, an algorithm
that computes the finite representation of posts∆(D)↓ .

In general, downward-closed sets cannot be finitely represented, in particular when con-
sidering an unbounded number of sessions. However, we will develop solutions for all
the three requirements by restricting the intruder model in a mild way. By establish-
ing these results, we prove that Ds,k admits a post-effective ideal completion as presented
in [FG09, BFM18].

Separation of State Space The invariant Sk we introduced in Example 6 is downward-
closed. It was basically determined by taking all processes and excluding the behaviour we
want to prove absence of: Uk := P \ Sk. This fact originates in the design and can not be
assumed to hold in general. Therefore, we can also characterise Uk as follows: Uk := {Q |
〈k〉 vkn Q}. It is well-known that the complement of a downward-closed set is upward-closed
which is defined in the obvious way.

Definition 15 (Upward-closure and -closedness). Let X ⊆ P be a set of processes. The
vkn-upward-closure of X is defined as: X↑ := {Q | ∃P ∈ X : P vkn Q}. A set X is said to
be vkn-upward-closed if X = X↑.

Let us sketch the general approach briefly again. Given a protocol specification P , we
find an invariant I over-approximating the behaviour of the protocol. Then, we check the
absence of undesired behaviour - called U for now - in the invariant: U ⊆ P\I. All invariants
we consider are inductive and downward-closed and therefore P \ I is upward-closed. Note
that this does not imply that the security properties we can prove are restricted to upward-
closed sets but is an observation about how the state space is separated. Now, we turn to
possible concrete applications in terms of security properties.

3.1. DOWNWARD-CLOSED INVARIANTS AND SECURITY PROPERTIES 29

3.1.1 Decidable Properties

Prior to proving Problems 1 to 3, let us explain which kind of security properties can be
solved with these means. We restrict ourselves to facts that can be proven directly using
the above means in the sense that no other intermediate results are needed. We do not
consider properties that are provable when provided directly provable facts as intermediate
results. Note that the presented procedures may involve expensive enumeration techniques.
This results from the fact that we are establishing decidability rather than computability
results. We will explain in Chapter 4 how to adapt these procedures to make them work
in practice. Let us start with a non-security property to outline the procedure that can be
used as blueprint for the remaining properties.

Deciding (s, k)-boundedness This is rather a property of theoretical interest than a
security property. Practically, it comes as a by-product when proving any security property.
By finding an invariant, we know that the reachable state space can be over-approximated
and is hence (s, k)-boundedness. Note that the process of finding an invariant is highly
non-trivial and we will present first attempts to automate this in Section 4.4. From a
theoretical point of view, we can come up with a procedure to decide (s, k)-boundedness
for a given protocol P that relies on expensive enumeration techniques. The procedure is
based on two semi-algorithms that are run in parallel. First, we recursively enumerate all
finite representations of invariants and check for each whether (A) it is inductive and (B)
it contains P . As soon as we find such a set I, we have proven (s, k)-boundedness of P :
Ds,k ⊇ I ⊇ reachs∆(P)↓. Second, we run an exploration on the set of traces reachs∆(P)∩ S∗s.
If a process exceeding the depth bound k occurs, we know that P is not (s, k)-bounded.
The question arises why these two procedures forming semi-algorithms and their parallel
execution suffice. In case reachs∆(P) is (s, k)-bounded, the enumeration of possible invariants
will eventually consider reachs∆(P)↓. The latter satisfies (A) and (B) and the algorithm
terminates with a positive answer. In case reachs∆(P) is not (s, k)-bounded, the exploration
of traces will eventually consider a process exceeding the depth-bound k and terminate with
a negative answer. Combining both cases leads to a complete and sound decision procedure.

Deciding Control-State Reachability and Secrecy Let us start with the property
already presented in [DOT17]: secrecy. Roughly speaking, secrecy is the absence of leaks. It
can be defined in our calculus using process call definitions: Secret[m] := in(m : m).Leak[m].
The latter can only be used by honest participants of the protocol as the property is violated
trivially otherwise. More generally, secrecy is an instance of control-state reachability that
asks whether the process call Q[· · ·] is present in any reachable process. To decide control-
state reachability, we can apply the presented procedure by augmenting the checks. First,
we additionally check in the first semi-algorithm whether Q[· · ·] is in I. If not, we termi-
nate with a positive answer. If so, we continue. Second, in addition to checking whether
a process exceeds the depth-bound, we examine whether Q[· · ·] is contained. If so, we ter-
minate with a negative answer. More generally, our results imply decidability of (forward)
coverability [BFM18], which subsumes secrecy and control-state reachability.

Susceptibility to Known-/Chosen-Plaintext Attacks Consider the encryption oracle
from Example 5. Based on its definition, the intruder can send arbitrarily many fresh
names to the oracle to encrypt. The observable information is a very large list of pairs of
plaintexts and their encryption with the same key k. This results in a higher possibility
to break the key k by crypto-analysing them. While this variant is called chosen-plaintext

30 CHAPTER 3. IDEAL COMPLETIONS FOR SECURITY PROTOCOLS

attack, the possibility of only observing plaintexts instead of choosing them is called known-
plaintext attacks. Intuitively, it is harder to break the key k with the latter attack. Using
invariants that over-approximate the reachable state space of some protocol, we can prove
the absence of these attacks. To this end, we simply need to verify that the invariant does
not include the downward-closed set

{
νk.
(
νm.(〈m〉 ‖ 〈e(m)k〉)

)n ∣∣ n ∈ N
}
. The absence of

this downward-closed set ensures that the intruder is neither able to observe an arbitrary
number of plaintext-ciphertext pairs nor can he even inject the plaintexts by himself. Note
that we might obtain invariants containing the latter downward-closed set even though no
such attack is possible. On the other hand, if a protocol is susceptible, we cannot certify this
property which is why our procedure is a semi-decision procedure. Overall, it is remarkable
that this property can only be expressed if one considers the case of unbounded number of
sessions/nonces.

Remark 1 (Certification and Further Applications). Note that for all three applications,
the output will either be a counterexample, which can be used to amend the protocol, or a
description of an invariant, which can be independently checked for correctness. Moreover,
it can be used to prove further properties - for instance when secrecy for some key has been
established. There are also verification techniques exploring the state space of protocols in
order to prove security properties. Our invariants can augment these procedures by pruning
the search space to be considered.

3.2 Depth-Bounded Processes are Well-Quasi-Ordered

Our goal is to construct finite representations of downward-closed invariants. To this end,
we will exploit properties of the algebraic structure of (Ds,k,vkn) as done in [DS19].

Definition 16 ((Well) Quasi Order). A relation v ⊆ S×S over some set S is a quasi-order
(qo) if it is reflexive and transitive. An infinite sequence s0, s1, . . . of elements of S is called
good if there are two indexes i < j such that si v sj . The sequence is called bad if it is not
good. When the qo (S,v) has no bad sequences it is called a well quasi order (wqo).

We will prove that (Ds,k,vkn) is not only a quasi order but a well quasi order by es-
tablishing a correspondence between processes in Ds,k and finitely-labelled forests of height
at most k. Let us briefly sketch the ingredients for this correspondence. We will define a
function FJ-Kk : P → FYs,k takes a process P with nestν(P) < k and transforms it into its

forest encoding. Conversely, the process that is represented by a single forest in FYs,k will be

straightforward. The elements in FYs,k will be represented by nested multisets. Overall, we
will exploit the known fact that multisets over a wqo are a wqo which results in the wqo
(FYs,k,vF).

Multisets Let X be a set and µ : X → N be a function. The support of µ is defined as
supp(µ) := {x | µ(x) > 0} and we say that µ is finite-support if supp(µ) is finite. The set
of functions from X to N with finite support are exactly the multisets of X, µ ∈ M(X).
For a quasi order (X,v); we define the multiset extension (M(X),vM) – which is also a
quasi order – as follows: µ1 vM µ2 holds for two multisets µ1, µ2 ∈ M(X) just if there
is an injective function f : supp(µ1) → supp(µ2) such that for each x ∈ supp(µ1), we have
x v f(x) and µ1(x) ≤ µ2(f(x)). When X is a finite set ordered by equality, vM coincides
with multiset inclusion. If (X,v) is a wqo, then (M(X),vM) is a wqo [FG09].

3.2. DEPTH-BOUNDED PROCESSES ARE WELL-QUASI-ORDERED 31

Forests We define a domain of forests FXs,k with sequential processes in Bs(X) as leaves:

Bs(X) := {Q[~M] | Q ∈ Q, ar(Q) = | ~M |, ~M ⊆MX
s } ∪MX

s

FXs,0 :=M(Bs(X)) FXs,k+1 :=M
(
Bs(X)] FX∪{xk+1}

s,k

)
(assuming xk+1 6∈ X)

The domain can be considered to be an inductive data structure. The set Bs(X) contains
all sequential processes of DXs,k. In the base case, forests have height 0 and FXs,0 are simply

a multiset of sequential processes. Forests of height k + 1 are represented in FXs,k+1 by a
multiset of sequential processes and subforests of height k.

Definition 17 (Definition of Encoding). We use multiset comprehensions {| . . . |} for this
definition. For any k ≥ nestν(P) we define:

FJP Kk :=

∅ if P = 0

{|P |} if P is sequential

{|FJQ[xk/x]Kk−1|} if P = νx.Q

FJQ1Kk ⊕FJQ2Kk if P = Q1 ‖ Q2

assuming {x1, . . . , xk}∩(bn(P)∪fn(P)) = ∅. In case this assumption is not met due to bound
names, α-renaming is applied implicitly before applying the definition. For k < nestν(P),
FJP Kk is undefined.

Let us recall an example for a forest encoding from [DS19].

Example 7. We consider the following process:

P = νa.
(
νc.(〈e(c)k〉 ‖ A[a, c]) ‖ B[a,m] ‖ νd.(C[a, d])

)
‖ νb.〈e(b)k〉

We can split P in the following way:

P = P1 ‖ P2

P1 = νa.(P3 ‖ B[a,m] ‖ P4) P2 = νb.〈e(b)k〉
P3 = νc.(〈e(c)k〉 ‖ A[a, c]) P4 = νd.C[a, d]

and the forest encoding FJP K2 ∈ F{m,k}2,2 where restrictions at nesting level k are renamed
canonically to x2−k and is represented as follows:

x2

x1

e(x1)k A[x2, x1]

B[x2,m] x1

C[x2, x1]

x2

e(x2)k

Lemma 4. If Q ∈ SYs and nestν(Q) ≤ k, then FJQKk ∈ FYs,k.

Proof. By easy induction on the structure of Q.

In our context, the message size bound s is fixed and given an initial protocol specifi-
cation P , the set of free names fn(P) is determined and finite, therefore Bs(X) has finite
cardinality and hence forms a wqo with equality. We define the quasi order (FXs,k,vF) in

a natural way as induced by the inductive data structure: for FXs,0 it coincides with the

32 CHAPTER 3. IDEAL COMPLETIONS FOR SECURITY PROTOCOLS

multiset extension of equality on Bs(X); for FXs,k+1 it coincides with the multiset extension

of the disjoint union of equality on Bs(X), and the forest embedding on FX∪{xk+1}
s,k . Overall,

(FXs,k,vF) is a wqo.

Lemma 5. Assume Q1, Q2 ∈ SYs with nestν(Q1) ≤ k and nestν(Q2) ≤ k. Then FJQ1Kk vF
FJQ2Kk implies Q1 vkn Q2.

Proof. See Appendix.

Theorem 3.1. For every finite Y ⊆ N and s, k ∈ N, (DYs,k,vkn) is a wqo.

Proof. We have to prove that every infinite sequence of processes P1, P2, . . . in DYs,k is good.

Even though P1, · · · ∈ DYs,k, we cannot assume that nestν(Pi) < k for every i ∈ N. But
we can have knowledge-congruent processes Qi for every i ∈ N satisfying this restriction:
there exists a process Qi ∈ Ss such that Qi ≡kn Pi and nestν(Qi) ≤ k. By Lemma 4,
this entails that FJQiKk ∈ FYs,k. We know that (FYs,k,vF) is a wqo and hence the sequence
FJQ1Kk,FJQ2Kk, . . . must be a good sequence. This means that there are i, j ∈ N with
i < j, such that FJQiKk vF FJQjKk. With Lemma 5, we get that Qi vkn Qj . Based on the
fact that Qi is knowledge congruent to Pi as is Qj to Pj , we know that Pi vkn Pj . This
proves that the sequence P1, P2, . . . is good and the claim follows.

3.3 Limits and Ideal Decompositions

In the previous section, we built the foundations to provide the finite representations of
downward-closed sets by proving the fact that (Ds,k,vkn) is a wqo. To this end, we introduce
limits as syntactic description of ideals for quasi orders as done in [DS19].

Definition 18 (Ideals). Let (S,v) be a qo. A set D ⊆ S is an ideal if it is downward-closed
and directed, i.e. for all x, y ∈ D there is a z ∈ D such that x v z and y v z. We write
Idl(S) for the set of ideals of S.

Single ideals are not sufficient to represent all downward-closed sets. Nevertheless, we
can use ideals to represent the latter. This originates in a well-known fact about well-quasi
orders: every downward-closed set is equal to a finite union of ideals. In case we require this
union to be minimal, it is unique, which is why we can consider a canonical union of ideals
which is called ideal decomposition of a downward-closed set. Consequently, representing
downward-closed sets of Ds,k merely requires us to provide finite representations for its
ideals. To this end, we introduce limits as a syntactic construct to denote ideals and define
their semantics. They comprise the same syntax as processes and are augmented by -ω,
which is a syntactic construct enabling the denotation of an arbitrary number of parallel
components.

Definition 19 (Limits). Limits L are terms that are formed according to the grammar:

L 3 L ::= 0 | (R1 ‖ · · · ‖ Rn)

R ::= B | Bω

B ::= 〈M〉 | Q[~a] | νx.L

When n = 0, R1 ‖ · · · ‖ Rn is written 0.

3.3. LIMITS AND IDEAL DECOMPOSITIONS 33

Definition 20 (Denotation of Limits). The denotation of L is the set JLK := [L]↓ where:

[0] := {0}
[L1 ‖ L2] := {(P1 ‖ P2) | P1 ∈ [L1], P2 ∈ [L2]}

[〈M〉] := {〈M〉}
[Q[~a]] := {Q[~a]}
[νx.L] := {νx.P | P ∈ [L]}

[Bω] :=
⋃
n∈N {(P1 ‖ · · · ‖ Pn) | ∀i ≤ n : Pi ∈ [B]}

The processes in JLK are called instances of L. We extend the definition of nestν(-) :
P→ N to cover limits by adding the case nestν(Lω) := nestν(L). It is straightforward to see
that for every instance P of a limit L, it holds that depth(P) ≤ nestν(L). Similar to DXs,k,

we define LXs,k to be the set of limits L with nestν(L) ≤ k, free names from X and do not
contain messages of size exceeding s. For the same reasons, we may omit X from now on.

Remark 2. Note that every limit is vkn-downward-closed by definition and hence also
closed under ≡kn. Moreover, iterating a process 〈M〉 is superfluous due to the persistence
of knowledge, i.e. J〈M〉ωK = J〈M〉K.

Lemma 6 (Persistence of Knowledge). Let Γ be a set of messages. Then 〈Γ〉 ‖ 〈Γ〉 ≡kn 〈Γ〉.

Proof. Γ ≤kn Γ,Γ holds by Axiom (Mon). It remains to show that Γ,Γ ≤kn Γ. Let M be
any message such that Γ,Γ ` Γ. Then, it is straightforward to construct a derivability tree
(of the same height) for Γ `M and hence Γ,Γ ≤kn Γ.

We want to establish the fact that unions of the presented limits are a sound and complete
representation of downward-closed sets of Ds,k. To this end, we prove that each limit is
indeed the denotation of an ideal and vice versa, i.e. Idl(Ds,k) = JLs,kK.

Grounding The denotation of limits are vkn-downward-closed sets. A natural question
to ask is membership of some process in such a set. We introduce means to reduce this
question to decidability of vkn.

Definition 21 (Grounding). The grounding d-en : Ls,k → Ds,k of a limit is defined as
follows:

dLen :=

L if L is sequential or 0

dL1en ‖ dL2en if L = L1 ‖ L2

νx.(dL′en) if L = νx.L′

(dBen)
n

if L = Bω

Example 8. Intuitively, grounding replaces every occurrence of ω by some given number n:

d(νx.〈x〉 ‖ (νy.Q[x, y])ω)ωe2 = ((νx.〈x〉 ‖ (νy.Q[x, y]) ‖ (νy.Q[x, y])) ‖
(νx.〈x〉 ‖ (νy.Q[x, y]) ‖ (νy.Q[x, y])))

We state some easy properties of grounding in the following lemmas. The proofs are
straightforward or direct consequences of the definitions.

Lemma 7. For every n ∈ N, dLen ∈ [L].

Lemma 8. For every n ≤ m ∈ N, dLen vkn dLem.

34 CHAPTER 3. IDEAL COMPLETIONS FOR SECURITY PROTOCOLS

Lemma 9. For every P ∈ JLK there exists an n ∈ N such that P vkn dLen.

Proof. By induction on the structure of L.

Theorem 3.2. For every L ∈ Ls,k, the set JLK is an ideal of (Ds,k,vkn).

Proof. For every process P ∈ [L], we know that nestν(P) ≤ nestν(L) ≤ k which implies that
the depth bound k is respected; all messages in P are renamings of messages in L and hence
the message sizes never exceed s. These two facts entail that JLK ⊆ Ds,k. Moreover, JLK is
downward-closed by definition. It remains to show that JLK is directed. Let P1, P2 ∈ JLK
be two processes. By Lemma 9, we obtain n1, n2 ∈ N such that Pi vkn dLeni , for i = 1, 2.
Then, P1, P2 vkn dLemax(n1,n2). By Lemma 8, we know that dLemax(n1,n2) ∈ JLK and have
shown that JLK is directed.

Theorem 3.3. Every ideal in Idl(Dk ∩ Ss) is the denotation of some limit L ∈ Ls,k.

Proof. The full proof can be found in [DS19]. We only want to sketch the main ideas. We
have introduced multisets in order to apply known facts about ideal completion to the latter.
To this end, we apply the forest encoding FJ-K to show that an ideal of Ds,k corresponds to
a downward-closed set of Fs,k. In order to obtain a limit from these multisets, we use the
representations for ideals of multisets introduced in [FG09], i.e. ~-products.

3.4 Decidability of Inclusion

We have introduced limits as a mean to finitely represent downward-closed sets. Our next
step is to show decidability of inclusion between two such representations of downward-closed
sets. Let D1, D2 ⊆ Ds,k be two vkn-downward-closed sets with their ideal decomposition:

D1 = I1 ∪ . . . ∪ In and D2 = J1 ∪ . . . ∪ Jm.

It is straightforward that D1 ⊆ D2 holds if and only if for every 1 ≤ i ≤ n, Ii ⊆ D2 holds.
We can exploit a well-known fact about ideals which is a result of their property of being
directed to simplify this check [Frä86].

Lemma 10. Let I, J1, J2 be three ideals of a wqo (D,≤). Then, I ⊆ J1 ∪ J2 iff I ⊆ J1 or
I ⊆ J2.

Proof. Towards a contradiction, I 6⊆ J1 and I 6⊆ J2. Let j1, j2 ∈ I be two elements such
that j1 ∈ J1 \ J2 and j2 ∈ J2 \ J1. As I is directed, there is a i ∈ I such that j1 ≤ i and
j2 ≤ i. We know that I ⊆ J1 ∪ J2 and hence i ∈ J1 ∪ J2. W.l.o.g. let i ∈ J1. Ideals are
downward-closed, so j2 ∈ J1, which is a contradiction.

Hence, D1 ⊆ D2 holds iff for every 1 ≤ i ≤ n, there is a 1 ≤ j ≤ m such that Ii ⊆ Ij . For
the decidability of inclusion of two downward-closed sets, this entails that it suffices that
inclusion of two ideals is decidable. Single ideals are represented by limits in our domain so
that we will develop a constructive proof to compare two limits.

3.4. DECIDABILITY OF INCLUSION 35

Structural Congruence for Limits For this purpose, we extend structural congruence
and introduce a normal form for limits. Structural congruence for limits consists of the
same rules as the one for processes, i.e. scope extrusion, α-renaming etc., but we addition-
ally require that 〈M〉ω ≡kn 〈M〉 for every message M . The latter reflects the intuition of
persistence which describes that knowledge that was known once will not be forgotten. We
exploit notation by using ≡kn for limits as well. It is straightforward to see that L1 ≡kn L2

entails JL1K = JL2K.

Remark 3 (Structural congruence and ω’s). Note that we did not introduce any means to
transfer terms from within an ω to its context. It is possible to define a coarser congruence
relation with which we can exploit the semantics of ω. We will discuss such a relation in
Section 4.6. It can be used to speed up the implementation of the inclusion check.

Standard Form for Limits Every limit is structurally congruent to a limit of the form
ν~x.(〈Γ〉 ‖

∏
i∈IQi[

~Mi] ‖
∏
j∈JB

ω
j) where every name in ~x occurs free at least once in

the scope of the restriction, and for all j ∈ J , Bj is also in standard form. When we

write sf(L)
α
= ν~x.(〈Γ〉 ‖ Q ‖ R) we imply that Q is a parallel composition of process calls∏

i∈IQi[
~Mi] (in which case we write |Q| for |I|) and R is a parallel composition of iterated

limits
∏
j∈JB

ω
j . Note that the standard form is in some sense recursive by definition as

every Bj is in standard form.

The Absorption Axiom The decidability proof hinges on a characterisation of inclusion
that requires an additional hypothesis on the intruder model.

Definition 22 (Absorbing Intruder). Fix an intruder model I = (Σ,`). Let ~x and ~y
be two lists of pairwise distinct names, Γ be a finite set of messages, and Γ′ = Γ[~y/~x].
Moreover, assume that names(Γ)∩ ~y = ∅. We say I is absorbing if, for all messages M with
names(M) ⊆ names(Γ), we have Γ,Γ′ `M if and only if Γ `M .

Lemma 11 ([DS19]). Isy is absorbing.

For the rest of this thesis, we assume an absorbing intruder model.
To understand the idea of the absorption axiom, consider a limit of the form L =(

ν~x.(〈Γ〉 ‖ Q)
)ω

. When comparing the difference in knowledge of both groundings dLe1

and dLe2: we have sf(dLe2)
α
=
(
ν~x.ν~x′.(〈Γ〉 ‖ 〈Γ′〉 ‖ Q ‖ Q′)

)
, where Γ′ = Γ[~x′/~x]. Imagine

we want to check whether a process ν~x.〈M〉 is embedded in dLe2. As M only contains
free names and names in ~x, the absorption axiom permits us to ignore Γ′ and merely check
whether M is in Γ. So basically, it suffices to check whether ν~x.〈M〉 vkn dLe1.

Eventually, we want to prove inclusion of two limits. Let us consider the easier problem
of inclusion of a single process in a limit to see how to apply the absorption axiom to our
problem. Lemma 9 states that for every process P ∈ JLK for some limit L, there is a n such
that P vkn dLen. This easily gives a semi-decision procedure to check whether a process P is
contained in some limit L: start with some grounding n of L and increase the factor until P
is embedded in the grounding. But in case P is not contained in L, this procedure does not
terminate. Intuitively, there should be some bound b that is the maximum factor to ground
with so that P could be still included. Every larger grounding dLen for n > b is irrelevant
for membership of P as we exploit the absorption axiom. Indeed, such a b is given by the
number of name restrictions and parallel compositions of process calls. We will prove that
every component produced by unfolding a sublimit more than b times does not contribute
new knowledge that is relevant for the membership of P .

36 CHAPTER 3. IDEAL COMPLETIONS FOR SECURITY PROTOCOLS

In contrast to the above example of membership, we deal with a multi-layered limit for
the inclusion check. Our algorithm intuitively descends into these layers and it is important
to keep track of sublimits we can still use. Hence, we introduce a variant of grounding,
called the n-th extension L⊗ n, of some limit L (for n ∈ N).

Definition 23 (Extension). We define extension -⊗ n : Ls,k → Ls,k of a limit as follows:

L⊗ n :=

L if L is sequential or 0

L1 ⊗ n ‖ L2 ⊗ n if L = L1 ‖ L2

νx.(L′ ⊗ n) if L = νx.L′

(B ⊗ n)
n ‖ Bω if L = Bω

Intuitively, extension imitates grounding but keeps all the sublimits Bω also with an ω.
Let us state two basic properties of extension -⊗ n.

Lemma 12. For every limit L and n ∈ N, JLK = JL⊗ nK.

Lemma 13. For every limit L and n ∈ N, dLen = dL⊗ ne0.

Proof. Direct consequence of both definitions.

Example 9. Note that we cannot generalise Lemma 13: dLen+m 6= dL⊗nem. For instance,
consider the following limit:

L := (νx.(νy.Q[x, y])ω)ω.

If we extend it by 1

L⊗ 1 = (νx.(νy.Q[x, y])ω)ω ‖ νx.((νy.Q[x, y])ω ‖ (νy.Q[x, y]))

and then expand the result by 1, we obtain

dL⊗ 1e1 = (νx.(νy.Q[x, y])) ‖ (νx.(νy.Q[x, y])2).

In contrast, if we simply expand by 2, we obtain

(νx.(νy.Q[x, y])2)2

in which νy.Q[x, y] occurs twice in both parts.

Remark 4. If there is only one level of ω’s — which will be denoted by ω-height(L) = 1 in
terms of definitions that will be introduced in Section 4.6 — then dLen+m = dL ⊗ nem for
all m and n.

Definition 24 (Source Paths). For a limit L, we extend the definition of the n-th expansion
of L by paths indicating from which part of L a subterm of dLen stems: We define dLπen
recursively:

dLπen :=

Lπ if L is sequential or 0

(
∏n−1
j=0 d(Bj)πjen)π if L =

∏n−1
j=0Bj

(νx.(dL′(π0)e
n))π if L = νx.L′

d(Bπ)nenπ if L = Bω

where the parallel composition for ω is delegated to the rule of parallel composition. Con-
sidering a process P ∈ JLK, we know that there is an n ∈ N such that P vkn dLen which

3.4. DECIDABILITY OF INCLUSION 37

entails that P ≡ ν~x.(〈Γ〉 ‖ Q) and dLen ≡ ν~x.ν~x′.(〈Γ′〉 ‖ Q ‖ Q′) with Γ ≤kn Γ′. By this
knowledge embedding, we have a correspondence between names and process calls of P and
dLen and can hence adopt their paths. This results in a source path annotated process Pπ
in which only names and process calls are annotated. We may refer to the position of a
name, process call or process instead of its path in a limit. Due to Γ ≤kn Γ′, it cannot be
guaranteed that paths for messages can be constructed.

It is a also worth noting that a source path annotation is dependent on the limit we consider.
The term source path reflects the idea that it is not the path constructed by the structure
of the process itself but the limit of origin.

Example 10. Let us consider the source-path annotations for the limit we expanded by 2
in Example 9:

νx00.((νy0000.Q[x, y]00000)000 ‖00 (νy0010.Q[x, y]00100)001)0 ‖ε
νx10.((νy1000.Q[x, y]10000)100 ‖10 (νy1010.Q[x, y]10100)101)1.

We explicitly start with the empty annotation ε and descend recursively according to the
definition. Note that the process calls have their own label as they are a single parallel
composition with respect to the definition of limits. We also use source path annotations in
Example 20.

Definition 25 (Originally Fixed and Non-Fixed parts). Consider a source path annotated
process Pπ ∈ JLK. We define every subterm Cπ′ to be an originally fixed part of L iff π′ does
not contain any ω in L. Conversely, a subterm Cπ′ is an originally non-fixed part of L iff
π′ contains an ω in L. We may also refer to the sets of subterms satisfying these properties
and omit the term originally. Note that non-fixed parts is a term for instances of a limit
while iterated components correspond to the limit itself. If clear from context, we may use
them interchangeably.

Due to the absence of source paths for messages in a process, we cannot classify messages
easily, which is not necessary for now. Prior to turning to the main result of this section,
we state and prove a property about grounding that is connected to checking inclusion and
will be used throughout the proofs.

Lemma 14. Let L1, L2 ∈ L, then JL1K ⊆ JL2K ⇐⇒ ∀n ∈ N : ∃m ∈ N : dL1en vkn dL2em.

Proof. First, let n ∈ N. We compute the expansion dL1en ∈ JL1K. By assumption, dL1en ∈
JL2K and by Lemma 9 there exists an m such that dL1en vkn dL2em as required.
Second, let P ∈ JL1K. We need to show that P ∈ JL2K. By Lemma 9, there exists an
expansion for some n with P vkn dL1en. By assumption, there is an m such that dL1en vkn

dL2em. By transitivity of vkn, we know that P vkn dL2em which is in JL2K. By downward
closure, the claim follows.

Theorem 3.4 (Characterisation of Limits Inclusion). Let L1 and L2 be two limits, with
sf(L1)

α
= ν~x1.(〈Γ1〉 ‖ Q1 ‖

∏
i∈IB

ω
i), and let n = |~x1|+ |Q1|+ 1. Then:

JL1K ⊆ JL2K ⇐⇒

{
sf(L2 ⊗ n)

α
= ν~x1, ~x2.(〈Γ2〉 ‖ Q1 ‖ Q2 ‖ R2) and Γ1 ≤kn Γ2 (A)

J〈Γ1〉 ‖
∏
i∈IBiK ⊆ J〈Γ2〉 ‖ R2K (B)

Theorem 3.5. Given L1, L2 ∈ Ls,k for some s, k ∈ N, it is decidable whether JL1K ⊆ JL2K.

38 CHAPTER 3. IDEAL COMPLETIONS FOR SECURITY PROTOCOLS

Proof. Based on the characterisation in Theorem 3.4, we design an algorithm recursing on
the structure of L1. One computes the two standard forms sf(L1) and sf(L2⊗n). For every
α-renaming that makes condition (A) hold, one checks condition (B) (recursively). If no
α-renaming satisfies both conditions, the inclusion does not hold. In every recursive check
of condition (B), there are fewer occurrences of ω in the limit on the left. This is why there
is no occurrence of ω in L1 eventually and it suffices to check condition (A).

In order to prove Theorem 3.4, we show that the presented conditions are both suffi-
cient and necessary. Let us state some facts about knowledge order ≤kn and knowledge
embedding vkn. The proofs can be found in the Appendix.

3.4.1 Facts about ≤kn and vkn

Lemma 15. Let Γ1,Γ2,Γ be sets of messages such that Γ1 ≤kn Γ2. Then, Γ,Γ1 ≤kn Γ,Γ2.

Corollary 1. Let ∆1,∆2,Γ1,Γ2 be sets of messages s.t. ∆1 ≤kn ∆2 and Γ1 ≤kn Γ2. Then,
∆1,Γ1 ≤kn ∆2,Γ2.

Corollary 2. Let Γ be a set of messages, P1, P2 ∈ P two processes for which sf(Pi) =
ν~xi.(〈Γi〉 ‖ Qi) for i ∈ {1, 2} and P1 vkn P2. Then, 〈Γ〉 ‖ P1 vkn 〈Γ〉 ‖ P2.

Lemma 16. Let P1, P2 be two processes and n ∈ N. If P1 vkn P2, then Pn1 vkn P
n
2 .

Lemma 17. Let L′ ∈ L a limit s.t. L′ = Lω for some L ∈ L. Then, (dL′en)m vkn dL′em∗n
holds for every m,n ∈ N.

3.4.2 Sufficient Conditions

Lemma 18 (Sufficient Conditions). If conditions (A) and (B) hold, then JL1K ⊆ JL2K.

Proof. Given that (A) and (B) hold, it suffices to show that ∀n1 ∈ N,∃n2 ∈ N.dL1en1 vkn

dL2⊗nen2 by Lemmas 12 and 14. Let n1 be an arbitrary number. With R1 :=
∏
i∈IB

ω
i , we

have dsf(L1)en1 = ν~x1.(〈Γ1〉 ‖ Q1 ‖ dR1en1) and sf(dL2 ⊗ ne0)
α
= ν~x1, ~x2.(〈Γ2〉 ‖ Q1 ‖ Q2)

by (A).
We show that ν~x1.(〈Γ1〉 ‖ Q1 ‖ dR1en1) vkn ν~x1, ~x2.(〈Γ2〉 ‖ Q1 ‖ Q2 ‖ dR2en2) for

some n2. Condition (A) induces a knowledge order for both fixed parts. Condition (B)
gives rise to some relation between the iterated components we will exploit. This relation is
captured in the following fact. For some α-renaming in (A) and some n2:

〈Γ1〉 ‖ dR1en1 vkn 〈Γ2〉 ‖ dR2en2 (*)

Prior to proving (*), we show that this fact and (A) suffice to prove our goal. With
sf(dRieni) = ν~yi.(ΓRni

i
‖ Q′i), we call ΓRni

i
the knowledge of dRieni for i ∈ {1, 2}. Because

of (∗), we can choose ~y2 so that ~y2 = ~y1, ~z2 and there is no need to rename for the em-
bedding anymore. Equipped with this abbreviation, the knowledge of the left hand side
(ν~x1.(〈Γ1〉 ‖ Q1 ‖ dR1en1) is Γ1,ΓRn1

1
, while Γ2,ΓRn2

2
is the knowledge of the right hand

side ν~x1, ~x2.(〈Γ2〉 ‖ Q1 ‖ Q2 ‖ dR2en2). This is also exactly the knowledge contained in

3.4. DECIDABILITY OF INCLUSION 39

(〈Γ1〉 ‖ dR1en1) respectively (〈Γ2〉 ‖ dR2en2), hence Γ1,ΓRn1
1
≤kn Γ2,ΓRn2

2
by (*). It re-

mains to take care of names and process calls for the embedding. Condition (A) already
takes care of non-iterated names and process calls. With our assumption (*), we obtain

ν~x1.(〈Γ1〉 ‖ Q1 ‖ 〈Γ1〉 ‖ dR1en1) vkn ν~x1, ~x2.(〈Γ2〉 ‖ Q1 ‖ Q2 ‖ 〈Γ2〉 ‖ dR2en2).

Both parts are knowledge congruent to our goal’s sides by Lemma 6 which proves the goal.

It remains to show that (*) holds, i.e. (〈Γ1〉 ‖ dR1en1) vkn (〈Γ2〉 ‖ dR2en2) for some n2.
We start with (B) and apply Lemma 14 so that we know that for every n1 ∈ N, there is a
m ∈ N such that 〈Γ1〉 ‖ d

∏
i∈IB1en1 vkn 〈Γ2〉 ‖ dR2em. By Lemma 16, we multiply on both

sides:
(〈Γ1〉 ‖ d

∏
i∈IB1en1)n1 vkn (〈Γ2〉 ‖ dR2em)n1 .

By Lemma 6, we pull the messages out of both replications:

〈Γ1〉 ‖ (d
∏
i∈IB1en1)n1 vkn 〈Γ2〉 ‖ (dR2em)n1 .

We continue on both sides individually. On the left, we omit messages for simplicity as we
already know that Γ1 ≤kn Γ2.

(d
∏
i∈IB1en1)n1 = (

∏
i∈IdB1en1)n1 = dR1en1 .

While we use Lemma 17 and Corollary 2 on the right in order to obtain that:

〈Γ2〉 ‖ (dR2em)n1 vkn 〈Γ2〉 ‖ dR2en1·m

Combining both paths leads to: 〈Γ1〉 ‖ dR1en1 vkn 〈Γ2〉 ‖ dR2en1·m. By choosing n2 = n1·m,
the claim follows.

3.4.3 Necessary Conditions

Lemma 19 (Necessary Conditions). If JL1K ⊆ JL2K, then conditions (A) and (B) hold.

For this proof we assume the intruder model to be absorbing. Let us first establish some
auxiliary definitions and results.

Corollary 3. Let ~x and ~y be two lists of pairwise distinct names, Γ,Γ1 be two finite sets of
messages, and Γ2 = Γ1[~y/~x]. Moreover, assume that names(Γ1)∩~y = ∅ and names(Γ)∩~y =
∅ = names(Γ) ∩ ~x. Then, for all messages M with names(M) ⊆ names(Γ,Γ1), we have that
Γ,Γ1,Γ2 `M if and only if Γ,Γ1 `M .

Proof. The direction from right to left is obvious. For the reverse direction, it is equivalent to
show that Γ,Γ1,Γ,Γ2 `M . Now, Γ,Γ1 = (Γ,Γ2)[~y/~x]. The claim follows by the assumption
that the intruder is absorbing (Definition 22).

Lemma 20. Let L,L′ be two limits such that L ≡ L′. Then for every n ∈ N : dLen ≡ dL′en.

Proof. The proof is a straightforward structural induction on L.

We introduce a refinement of grounding and a function folding the right hand side but
preserving the knowledge embedding. The (n, k,m)-th grounding takes a limit and unfolds
each ω n times for the outer k nested levels of ω, and m times for the inner ones.

40 CHAPTER 3. IDEAL COMPLETIONS FOR SECURITY PROTOCOLS

Definition 26 (Step-Indexed Grounding). For a limit L in standard form, we define the
(n, k,m)-th grounding of L to be the process dLen,k,m recursively:

dLen,k,m :=

L if L is sequential or 0

dL1en,k,m ‖ dL2en,k,m if L = L1 ‖ L2

νx.(dL′en,k,m) if L = νx.L′(
dBen,k−1,m

)n
if L = Bω ∧ k > 0

(dBem)
m

if L = Bω ∧ k = 0

Definition 27 (ω-height). For a limit L, we define ω-height as follows:

ω-height(L) :=

0 if L is sequential or 0

max (ω-height(R1), · · · , ω-height(Rn)) if L = R1 ‖ · · · ‖ Rn
ω-height(L′) if L = νx.L′

ω-height(B) + 1 if L = Bω

Lemma 21. Let L be a limit and m,n, k ∈ N. If k ≥ ω-height(L), then dLen,k,m = dLen.

Proof. The parameter k only decreases when recursing into a limit under ω. If k ≥
ω-height(L) the last case of the definition will never apply, which makes the definition
coincide with the one of n-grounding.

The idea of the following parametrised function is to fold an m-grounding to an n-
grounding up to a certain ω-height k of the limit. Since we want to be very specific about
the domains, we define some sets of groundings.

Definition 28 (Set of Groundings). Let L ∈ L and m,n, k ∈ N.
We define the following two sets of processes:

• RmL := {dsf(L)em}

• Rn,k,mL := {dsf(L)en,k,m}

Definition 29. Let L be a limit in recursive standard form and m, k, n ∈ N. The function
Φn,mk,L : RmL → R

n,k,m
L and is parametrised in all four variables.

Φn,mk,P (P) :=

P if k = 0

ν~x.(〈Γ〉 ‖ Q ‖
∏
j∈J

(
Φn,mk,Lj

(dLωj em)
)

if k > 0 and P = ν~x.(〈Γ〉 ‖ Q ‖
∏
j∈JL

ω
j)(

Φn,mk−1,L(dLem)
)n

if k > 0 and P = dLωem

We may omit the parameters n and m in the following if they are obvious from context
as they do not change over the process of folding.

Definition 30 (Multi-Hole Contexts). We define multi-hole contexts inductively: the actual
base case is a “zero-hole context” which is a plain process as defined in Definition 5. Building
on this, we define single-hole contexts C1 with which we construct multi-hole contexts Cn for
arbitrary n.

Cn+1 ::= νx.Cn+1 | Cn ‖ C1 C1 ::= [•] | νx.C1 | C1 ‖P | P ‖ C1

We can fill an n-ary context by Cn[P1, · · · , Pn] which denotes that P1, · · · , Pn are input in
preorder into the syntax tree of Cn. When clear from context, we may omit the arity n.

3.4. DECIDABILITY OF INCLUSION 41

Lemma 22 (Folding is Sound w.r.t. vkn). Let L1, L2 be two limits in standard form Li =
ν~xi.(〈Γi〉 ‖ Qi ‖ Ri) with n = | ~x1| + |Q1| + 1. If there is an m ∈ N such that m > n and
dL1e0 vkn dL2em, then ∀k : dL1e0 vkn Φn,mk,L2

(dL2em).

Proof. We prove the claim by induction on k.
For k = 0, the claim trivially follows as Φn,m0,L2

(dL2em) = dL2em by the assumption that

dL1e0 vkn dL2em holds.
For the induction step, we assume that dL1e0 vkn Φn,mk,L2

(dL2em) and prove that

dL1e0 vkn Φn,mk+1,L2
(dL2em).

By definition of folding, both Φk,L(dL2em) and Φk+1,L(dL2em) are folding in exactly the
same way up to the k-th recursive calls, i.e. calls in which k decreases. This means that up
to the calls Φ0,L′ and Φ1,L′ , both Φk,L(dL2em) and Φk+1,L(dL2em) will have constructed the
same context C[-, · · · , -] around these final calls. We thus characterise A = Φn,mk,L2

(dL2em),

and B = Φn,mk+1,L2
(dL2em) as follows:

A = C[Φn,m0,Fω
1

(Fω1), · · · ,Φn,m0,Fω
j

(Fωj)]

= C[dFω1 em, · · · , dFωj em] = C[(dF1em)m, · · · , (dFjem)m]

B = C[Φn,m1,Fω
1

(Fω1), · · · ,Φn,m1,Fω
j

(Fωj)] = C[(dF1em)n, · · · , (dFjem)n]

Recall that L1 = ν~x1.(〈Γ1〉 ‖ Q1 ‖ R1) and hence dL1e0 = ν~x1.(〈Γ1〉 ‖ Q1). By assumption,
we have

ν~x1.(〈Γ1〉 ‖ Q1) vkn Φn,mk,L2
(dL2em) = A (i)

and want to prove that

ν~x1.(〈Γ1〉 ‖ Q1) vkn Φn,mk+1,L2
(dL2em) = B. (ii)

Intuitively, we have to find a way to preserve the knowledge embedding from (i) when
removing some branches in the holes of the context to get from A to B. Let us show what A
and B look like explicitly with their context:

A ≡ ν~c.(〈Γc〉 ‖ Qc ‖ D) with D = (dF1em)m ‖ · · · ‖ (dFjem)m

B ≡ ν~c.(〈Γc〉 ‖ Qc ‖ E) with E = (dF1em)n ‖ · · · ‖ (dFjem)n

We call Γc the knowledge of the context.
Our goal is to show that reducing the number of iterations in each of D’s parallel com-

ponents does not affect the knowledge embedding described in (i) and thereby obtain (ii).
Let us first consider names and process calls. We can split dL1e0 in the following way:
dL1e0 = ν~x1.(〈Γ1〉 ‖ Q1) = ν~y.ν~z.(〈Γ1〉 ‖ Qy ‖ Qz) where ~y ⊆ ~c and Qy ⊆ Qc . The
intention is to distinguish names and process calls that are already matched in the context.
This is why we do not require all process calls that are only using names from ~y to be in Qy
but some of them might be in Qz. The goal follows with the following claim immediately.

Claim I: In every hole of context C[•, · · · , •], we can reduce the number of branches to
at most n, i.e. for every 1 ≤ l ≤ j we can have a grounding dFlen instead of dFjem.

Proof of Claim I. Towards a contradiction, assume that there is a hole in which we cannot
remove m− n branches. W.l.o.g. let dLlem for 1 ≤ l ≤ j be the sublimit in this hole. There
might be three reasons for this: names, process calls and knowledge.

42 CHAPTER 3. IDEAL COMPLETIONS FOR SECURITY PROTOCOLS

Considering the names and process calls, we know that | ~x1| + |Q1| < n by definition
and hence |~z|+ |Qz| < n. Now, we investigate the components that ~z and Qz are matched
to. In the worst case, all of them are mapped to this hole but we still delete m−n branches
that are not used to match the names ~z. For the process calls in Qz, we have to distinguish
two cases. First, if a process call uses any name from ~z, it is fine as we will leave them
anyway. Second, if a process call does not use any name from ~z, it is fine to delete this
branch as there will be enough copies in the remaining branches to cover this process call.

It remains to reason about knowledge. We make the knowledge of D, i.e. the one having
budget k, explicit: sf(D) = ν~a.(Γm ‖ · · ·) and factor out the knowledge from sublimit dFlem:
Γm = Γ′m,Γl,m so that Γl,m was the knowledge obtained through dFlem. For knowledge, we
have to prove that ∀M : Γ1 ` M =⇒ Γc,Γ

′
m,Γl,n ` M given that Γc,Γ

′
m,Γl,m ` M . The

idea now is to reduce the knowledge from Γl,m to Γl,n by Corollary 3, which is a corollary
of the absorbing intruder. Let us define Γ′c,m = Γc,Γ

′
m indicating the context of the hole we

are considering. As m might be bigger than 2n, we have to iterate the process of reducing
the number of branches. Hence, we generalise the notation of Γl,m and Γl,n in the following
way: (dFlem)i ≡ ν~ai.(Γl,i ‖ · · ·).

Claim II: ∀m > n, Γl,m `M =⇒ Γl,m−1 `M .
Proof of Claim II. For convenience, we rename Γl,i to Λi. The main observation is that

we can split the knowledge Λm into Λm−1 and a remainder Λ′. We can choose a branch
which does not use names from ~z to contribute to Λ′. Since we know that n ≥ 1, we know
that m > 1 by assumption. Therefore, we can split Λm−1 again and obtain the knowledge
stemming from one branch, which we call Λ′′. Let us recall the assumption and goal after
these rewriting steps: Given that

Γ′c,m,Λm−2,Λ
′,Λ′′ `M (iii)

holds, we want to prove that Γ′c,m,Λm−2,Λ
′′ ` M . Let ~w′ and ~w′′ be the names only used

in Λ′ and Λ′′ respectively so that:

~w′ ∩ ~w′′ = ∅ and names(Γ′c,m,Λm−2) ∩ ~w′ = ∅ = names(Γ′c,m,Λm−2) ∩ ~w′′ (iv)

Λ′ and Λ′′ have been obtained from a branch of the same sublimit, so we can infer that

Λ′′ = Λ′[~w′′/~w′]. (v)

Notice that ~w′ ∩ ~z = ∅ by the fact how we have chosen the branch for Λ′. Furthermore,
~w′∩~y = ∅ by ~y ⊆ ~c. Combining these observations, we get that ~x1∩ ~w′ = ∅. By the Locality-
Axiom and Γ1 ` M , we get names(M) ⊆ names(Γ1) ⊆ ~x1. Therefore, names(M) ∩ ~w′ = ∅
which implies that

names(M) ⊆ names(Γ′c,m,Λm−2,Λ
′′) (vi)

The facts (iii) to (vi) fulfil the conditions for Corollary 3 resulting in Γ′c,m,Λm−2,Λ
′′ ` M

which reads Γ′c,m,Λm−1 ` M when folding back which is the goal of Claim II. By this, we
have shown that we can remove m − n branches which leads to a contradiction which is
why Claim I holds. As dFlem was chosen arbitrarily, we have shown that we can remove
m− n branches in every hole of the context C[•, · · · , •] which concludes this proof.

Corollary 4. Let L1, L2 be two limits with sf(L1) = ν~x1.(〈Γ1〉 ‖ Q1 ‖ R1) and JL1K ⊆ JL2K.
Then, sf(L2 ⊗ n)

α
= ν~x1, ~x2.(〈Γ2〉 ‖ Q1 ‖ Q2 ‖ R2) and Γ1 ≤kn Γ2 for n = |~x1|+ |Q1|+ 1.

Proof. First, we show that dsf(L1)e0 vkn dL2en. By JL1K ⊆ JL2K, we know that there
is an m so that dsf(L1)e0 vkn dL2em by Lemma 14. From Lemma 22, we obtain that

3.4. DECIDABILITY OF INCLUSION 43

that dsf(L1)e0 vkn Φn,mk,L2
(dL2em) for every k. Substituting ω-height(L2) for k leads to

Φn,mω-height,L2
(dL2em). This is dL2en by Lemma 21. Using this knowledge embedding, we

get dL2en
α
= ν~x1, ~x2.(〈Γ2〉 ‖ Q1 ‖ Q2) with Γ1 ≤kn Γ2. With Lemma 13, we observe that

dL2en = dL2⊗ne0. By this, the claim follows as d-e0 merely omits the iterated parts, i.e. R2,
from sf(L2 ⊗ n).

Lemma 23 (Necessary Conditions for Inclusion). Let L1 and L2 be two limits, with sf(L1)
α
=

ν~x1.(〈Γ1〉 ‖ Q1 ‖ R1) with R1 =
∏
i∈IB

ω
i , and let n = |~x1|+|Q1|+1. Given that the inclusion

JL1K ⊆ JL2K, both conditions (A) and (B) hold.

Proof. For (A), the claim follows by Corollary 4 which implicitly gives a renaming for L2.
For (B), we want to show that J〈Γ1〉 ‖

∏
i∈IBiK ⊆ J〈Γ2〉 ‖ R2K.

Let Ni = 〈Γi〉 ‖ Ri. It is straightforward to see that J〈Γ1〉 ‖
∏
i∈IBK ⊆ JN1K. This is why it

is enough to show that JN1K ⊆ JN2K by transitivity.
Towards a contradiction, we assume that for all possible renamings so that (A) is satisfied,
JN1K 6⊆ JN2K. By Lemma 14,

∃m′1,∀m1 ≥ m′1,∀m2.dN1em1 6vkn dN2em2 . (*)

First, knowledge could break the embedding. Let us define

sf(dNiemi) = νyi.(Γi ‖ Γ′i ‖ Q′i).

Notice that names(Γi)∩ ~yi = ∅. There might be two reasons why the knowledge embedding
does not hold.

First, the embedding breaks because of knowledge. This is impossible as Γ1,Γ
′
1 and

Γ2,Γ
′
2 represent the knowledge of groundings of the two limits L1 and L2 as their top level

knowledge is replicated in (B). Therefore, the inclusion JL1K ⊆ JL2K would also break which
is a contradiction.

Second, names or process calls can hence be the only reasons why the knowledge em-
bedding dN1em

′
1 vkn dN2em2 does not hold for any m2. We will derive a contradiction by

choosing n1 = 2 ·max(|~x2|+ |Q2|+1,m′1). We incorporate dR1en1 into sf(L1): dsf(L1)en1 =
ν~x1.(Γ1 ‖ Q1 ‖ dR1en1). Recall that dsf(L2 ⊗ n)em2

α
= ν~x1, ~x2.(〈Γ2〉 ‖ Q1 ‖ Q2 ‖ dR2em2).

By the size of n1, at least half of the names and process calls of dR1en1 have to be covered
by dR2em2 as the non-iterated part ~x2 and Q2 cannot do more than half. But by definition
n1

2 ≥ m′1 so ∀m2, dR1e
n1
2 6vkn dR2em2 as knowledge cannot be the reason for (∗) to break.

Altogether, this entails that there is an n1 such that for all m2:

dsf(L1)en1 = ν~x1.(Γ1 ‖ Q1 ‖ dR1en1)
6vkn

ν~x1, ~x2.(〈Γ2〉 ‖ Q1 ‖ Q2 ‖ dR2em2)
α
= dsf(L2 ⊗ n)em2 .

Using Lemma 12, this implies that dL1en1 6vkn dL2em2 for every m2. In turn, this entails
that JL1K 6⊆ JL2K by Lemma 14 which is a contradiction.

44 CHAPTER 3. IDEAL COMPLETIONS FOR SECURITY PROTOCOLS

3.5 Computing Post-Hat

To instantiate the ideal completions framework, it remains to show that p̂osts∆(L) is de-
cidable for any limit L. To be precise, we need to define an algorithm that returns a set
of limits {L1, · · · , Ln} such that p̂osts∆(L) = JL1K ∪ · · · ∪ JL2K without enumerating all
instances of L. Assuming an absorbing intruder, we will be able to show that it suffices
to consider some finite expansion of L to exhibit every possible successor, e.g. by factor b.
Every unfolding that is produced by some bigger factor will not contribute successors that
have not been considered before. Intuitively, this is a consequence of the fact that an in-
put action can only bind a finite number of names due to the message size restrictions.
There are two types of transitions to consider. First, for τ -transitions it suffices to expand
by 1 as no names are bound in an input pattern and hence occuring in the continuation.
Second, for input patterns of the form in(~x : M), we want to guarantee that every possi-
ble message that can be bound to x can be filled with distinct names stemming from the
same position in the limit. Hence, the bound b is not fixed but parametric in the arity
of message constructors of the intruder model I and the patterns of process call defini-
tions ∆. For instance, consider the symmetric intruder model. Given a size bound s on
messages, we know that a message M can have at most 2s distinct names. Recall that the
fragment we are considering only requires the processes to respect the message size bound:
DXs,k := {P ∈ Ss | fn(P) ⊆ X,∃Q ∈ Ss : Q ≡kn P ∧ nestν(Q) ≤ k}. So we do not require the
message for the pattern match to respect the size bound s. Therefore, we might need 2s for
every variable to be bound when considering the symmetric intruder model.

Definition 31 (β(∆) and γ(I)). Let ∆ be a set of definitions and I be an intruder model.
We define β(∆) and γ(I) as follows:

β(∆) := max{ |~x| | (Q[~y] := A+ in(~x : M).P +A′) ∈ ∆ }
γ(I) := max{ ar(f) | f ∈ Σ) } with I = (Σ,`).

Definition 32 (p̂ost). Let b = β(∆) · γ(I)s−1 + 1 and sf(L⊗ b) = ν~x.(〈Γ〉 ‖ Q ‖ R), then

p̂osts∆(L) :=
{

ν~y.
(
〈Γ′〉 ‖ Q′ ‖ R

) ∣∣ ν~x.
(
〈Γ〉 ‖ Q

)
→∆ ν~y.

(
〈Γ′〉 ‖ Q′

)
∈ Ss

}
We basically want to prove that every successor of every instance of a limit L is covered

by this definition. For this purpose, the following observation enables us to only consider
expansions of L instead of arbitrary instances.

Corollary 5 (Post of Expansion is Enough). Let L be a limit and P ∈ JLK. Then, for every
P1 ∈ post(P), there is a P2 ∈ post(dLen) for some n ∈ N such that P1 vkn P2.

Proof. As P ∈ JLK, we know that there is a n′ ∈ N such that P vkn dLen
′

by Lemma 9.
We choose this n′ to be n. We have that P → P1 and P vkn dLen. As vkn is a simulation
(Theorem 2.1), we know that there is a P2 so that dLen → P2 and P1 vkn P2.

Theorem 3.6. p̂osts∆(L) = {L1, . . . , Ln} =⇒ posts∆(JLK)↓ = JL1K ∪ . . . ∪ JLnK.

Proof. We assume that p̂osts∆(L) = {L1, . . . , Ln} and prove the set equality by two inclu-
sions. First, we show that

(
post(JLK) ∩ Ss

)
↓ ⊇ JL1K ∪ . . . ∪ JLnK. It suffices to show that

JLjK ⊆
(
post(JLK) ∩ Ss

)
↓ for every j ∈ {1, · · · , n}. We choose j arbitrarily and prove the

latter statement. By definition, we know that Lj stems from at least one transition in the
non-iterated part of sf(L ⊗ b) = ν~x.(〈Γ〉 ‖ Q ‖ R). W.l.o.g. let P1 := ν~x.

(
〈Γ〉 ‖ Q

)
→∆

3.5. COMPUTING POST-HAT 45

ν~y.
(
〈Γ′〉 ‖ Q′

)
=: P2 be this transition in Ss. Hence, Lj = ν~y.

(
〈Γ′〉 ‖ Q′ ‖ R

)
. By Lemma 12,

JLK = JL ⊗ bK and therefore dν~x.(〈Γ〉 ‖ Q ‖ R)en = ν~x.(〈Γ〉 ‖ Q ‖ dRen) ∈ JLK for every n.
Because of P1 → P2, we know that dν~x.(〈Γ〉 ‖ Q ‖ R)en → dν~y.(〈Γ′〉 ‖ Q′ ‖ R)en. This is
why dLjen = dν~y.(〈Γ′〉 ‖ Q′ ‖ R)en ∈ post(JLK) for every n. With Lemma 9, we know that
for every P ∈ JLjK, there is an m so that P vkn dLjem. By downward-closure, we infer that
P ∈

(
Jpost(L)K ∩ Ss

)
↓.

Second, we show that
(
post(JLK) ∩ Ss

)
↓ ⊆ JL1K∪ . . .∪JLnK. Let dLeb has standard form:

sf(dLeb) α
= ν~x1.(Γ1 ‖ Q[~M] ‖ C1). By Corollary 5, it suffices to consider only successors of

groundings of L. Therefore, let b < m ∈ N with sf(dLem)
α
= ν~x1, ~x2.(〈Γ1〉 ‖ 〈Γ2〉 ‖ Q[~M] ‖

C2) and Q[~M] := in(~p : N).P1. W.l.o.g., we derive the message which is matched using

some fresh intruder names ~c: Γ1,~c ` N [~M ′/~x]. Overall, we obtain the following transition:

dLem Q[~M]=in(~p:N).P1+A−−−−−−−−−−−−−−→
~p→ ~M ′

ν~x1, ~x2,~c.(〈Γ1〉 ‖ 〈Γ2〉 ‖ 〈~c〉 ‖ P1[~M ′/~p] ‖ C1) =: Q′ ∈ posts(L)

where the annotations explicitly state which process call and action was used with which
substitution. We want to show that we can have the same reduction in dLeb. We do so by
proving that this transition is still enabled.

Claim I: In every hole of context C[•, · · · , •], we can reduce the number of branches to
at most n, i.e. for every j we can have a grounding dFjen instead of dFjem, for every k ∈ N:

∃~yk,∆k, Dk : Φb,nk,L(dLen)
Q[~M]=in(~p:N).P1+A−−−−−−−−−−−−−−→

~p→ ~M ′
ν~yk,~c.(〈∆k〉 ‖ 〈~c〉 ‖ P1[~M ′/~p] ‖ Dk)

with ∆,~c ` N [~M ′/~p] (*)

Proof of Claim I by induction on k: For the base case in which k = 0, the claim holds
by assumption. For the induction step, we assume that (∗) holds for k and we prove it
for k + 1. Similar to the proof of Lemma 22, we use a multi-hole context C[•, · · · , •] to
distinguish between having budget k or k + 1. Let F1, · · · , Fj be j limits and C[•, · · · , •] a
multi-hole context so that:

Φb,nk,L(dLen) ≡ C[Φb,n0,Fω
1

(Fω1), · · · ,Φb,n0,Fω
j

(Fωj)] = C[dFω1 en, · · · , dFωj en]

= C[(dF1en)n, · · · , (dFjen)n] = A

Φb,nk+1,L(dLen) ≡ C[Φb,n1,Fω
1

(Fω1), · · · ,Φb,n1,Fω
j

(Fωj)]

= C[(dF1en)b, · · · , (dFjen)b] = B

We want to show that it suffices to have b copies of Fl for any 1 ≤ l ≤ j. Since Q[~M] also
occurs in sf(dLeb), it is trivial to keep the process call which is reduced. It remains to argue
that the same redex is enabled in B. Towards a contradiction: Assume that there is a hole
in which b copies are not sufficient. W.l.o.g. let Ll be the limit in this hole.

We did not explicitly state the message N [~M ′/~p] but the substitution ~p → ~M ′ for the
continuation since the substitution is solely determining the successor.

We know that A’s knowledge is ∆k and factor out the knowledge from sublimit dFlem:
∆k = ∆′k,∆l,m so that ∆l,m was the knowledge obtained through dFlem. We want to prove

that ∆′k,∆l,m,~c ` N [~M ′/~p] =⇒ ∆′k,∆l,b,~c ` N [~M ′/~p] where ∆l,b denotes the knowledge
obtained through dFleb respectively.

Now, we consider the different names used in N [~M ′/~p]. It is straightforward to see that
names(N) ⊆ ~x1. Recall the definition of b:

b := β(∆) · γ(I)s−1 + 1

46 CHAPTER 3. IDEAL COMPLETIONS FOR SECURITY PROTOCOLS

Hence, we know that β(∆) ≥ |~p| and therefore b ≥ |~p| · γ(I)s−1 + 1. Intuitively, this ensures
that there are enough distinct names for every single parameter in the parameter list as the
size determines the maximum depth of the syntax tree of a message. As names(~p) < b, we
can remove at least m − b branches without loosing names used in ~p. Therefore, we can
assume that names(N [~M/~p]) ∈ ~x1. The idea is to reduce the knowledge from ∆l,m to ∆l,b

by Corollary 3, which is a corollary of the absorbing intruder. As m might be bigger than 2b,
we have to iterate the process of reducing the number of branches. Hence, we generalise the
notation of ∆l,m and ∆l,b in the obvious way: (dFlem)i ≡ ν~ai.(∆l,i ‖ · · ·).

Claim II: ∀m > b, ∆l,m ` N [~M/~p] =⇒ ∆l,m−1 ` N [~M/~p].
Proof of Claim II. For convenience, we rename ∆l,i to Λi. The main observation is that

we can split the knowledge Λm into Λm−1 and a remainder Λ′. We can choose a branch
which does not use names from ~x1 to contribute to Λ′. Since we know that n ≥ 1, we know
that m > 1 by assumption. Therefore, we can split Λm−1 again and obtain the knowledge
stemming from one branch which we call Λ′′. Let us recall the assumption and goal after
these rewriting steps: Given that

∆′k,Λm−2,Λ
′,Λ′′ ` N [~M/~p] (iii)

holds, we want to prove that ∆′k,Λm−2,Λ
′′ ` N [~M/~p]. Let ~w′ and ~w′′ be the names only

used in Λ′ and Λ′′ respectively so that:

~w′ ∩ ~w′′ = ∅ and names(Γ′c,m,Λm−2) ∩ ~w′ = ∅ = names(Γ′c,m,Λm−2) ∩ ~w′′ (iv)

Λ′ and Λ′′ have been obtained from a branch of the same sublimit, so we can infer that

Λ′′ = Λ′[~w′′/~w′]. (v)

Notice that ~w′ ∩ ~x1 = ∅ by the fact how we have chosen the branch for Λ′. Because of
names(N [~M/~p]) ⊆ ~x1, we can infer that names(N [~M/~p]) ∩ ~w′ = ∅ which implies that

names(N [~M/~p]) ⊆ names(∆′k,Λm−2,Λ
′′) (vi)

The facts (iii) to (vi) satisfy the conditions for Corollary 3. Applying this corollary leads

to ∆′k,Λm−2,Λ
′′ ` N [~M/~p] which reads ∆′k,Λm−1 ` N [~M/~p] when folding back which is

the goal of Claim II. In turn, this concludes the proof of Claim I.
Instantiating the statement of Claim I with k > ω-height(L) shows that this transition

is still enabled in dLeb. Consider the extension L ⊗ b of limit L whose standard form we

choose to resemble the correlation with dLeb: sf(L ⊗ b) α
= ν~x1.(Γ1 ‖ Q[~M] ‖ C1 ‖ R1). By

the definition of p̂ost(L), we know that

L′ := ν~x1.(〈Γ1〉 ‖ P1[~M/~p] ‖ C1 ‖ R1) ∈ p̂ost(L).

Recall that Q′ = ν~x1, ~x2,~c.(〈Γ1〉 ‖ 〈Γ2〉 ‖ 〈~c〉 ‖ P1[~M ′/~p] ‖ C1) was the successor of dLem
from the beginning. It remains to show that Q′ ∈ JL′K. As before for L ⊗ b, we relate the
standard form of L⊗m to dLem and get the following:

sf(L⊗m)
α
= ν~x1, ~x2.(〈Γ1〉 ‖ 〈Γ2〉 ‖ Q[~M] ‖ C2 ‖ R2)

By Lemma 12, we have that JL⊗mK = JL⊗ bK and taking one step hence leads to

K ′ := Jν~x1, ~x2,~c.(〈Γ1〉 ‖ 〈Γ2〉 ‖ 〈~c〉 ‖ P1[~M ′/~p] ‖ C2 ‖ R2K
= Jν~x1.(〈Γ1〉 ‖ 〈~c〉 ‖ P1[~M ′/~p] ‖ C1 ‖ R1)K =: L′

As Q′ ∈ K ′, it also holds that Q′ ∈ L′ which concludes this proof.

3.6. INVARIANT FOR EXAMPLE 2 47

3.6 Invariant for Example 2

Equipped with the theory established in this chapter, we want to give an invariant for
Example 2. On the one hand, this proves that the protocol is depth-bounded as we are able
to give an invariant. On the other hand, it over-approximates the reachable state space and
proves secrecy of the session key k as Leak[k] is not present in the invariant.

The invariant can actually be given as a single limit which is also a property we will
comment on in Section 4.1. The following limit L is an inductive invariant for Example 2
when restricting messages in processes to size 3:

L = νa, b, kas, kbs.(〈a, b〉 ‖ A1[a, b, kas] ‖ B1[a, b, kbs] ‖ S[a, b, kas, kbs]ω ‖ Lω1)

L1 = νna.
(
〈na〉 ‖ A2[a, b, kas, na] ‖ Lω2

)
L2 = νk.

(
〈e(k)(a,kas)〉 ‖ 〈e(k)(b,kas)〉 ‖ 〈e(k)(na,kas)〉 ‖ 〈e(k)kbs〉 ‖ Secret[k]ω ‖
A3[a, b, kas, k]ω ‖ Lω3

)
L3 = νnb.

(
〈e(nb)(k,k)〉 ‖ 〈e(nb)k〉 ‖ B2[a, b, kbs, nb, k]

)
Since information like the property that k is a secret is uncountable, it might look artificial

that Secret[k] is decorated with an ω. This is a modelling artefact as we use process calls to
model properties like secrecy. In contrast to messages, process calls can be consumed and
hence need to decorate Secret[k] with an ω in the inductive invariant.

The number of name restrictions is finite: nestν(L) = 7. Hence, the invariant certifies
that any process of JLK is (3, 7)-bounded. It also satisfies secrecy of k as Leak[k] does not
occur. Since P0 ∈ JLK, we also know that all processes reachable from P0 satisfy these
properties. In fact, Lω is also an inductive invariant and therefore the same properties hold
for Pω0 . Moreover, we obtain that Jνk.(νx.(〈(x, e(x)k)))ω〉K 6⊆ JLωK. Hence, the invariant Lω

proves that the protocol is not susceptible to known-/chosen-plaintext attacks.
We present the benchmark results for Example 2 obtained when using our prototype

implementation in Chapter 5. The limit L was automatically inferred and the results also
show that the limit(s) are indeed inductive.

Chapter 4

Algorithmic Aspects

The previous chapters established rather theoretical decidability results. We now turn to
computability results: we will explain how to apply these foundations in practice and present
observations to lower the computational workload. To start with, we explain how we can
exploit the relation of two limits when checking inclusion: p̂ost(L) ⊆ L for some L; since
our characterisation did not account for this. While this check is capable to handle the
generic intruder model, we will then turn to the intruder model for symmetric encryption
and present some results to handle knowledge algorithmically. This will lead to a method to
handle the pattern matching for the symmetric intruder model, which should be adoptable
to generic intruder models. Equipped with the means to do the pattern matching, we present
a generic way of generating invariants and exemplify it. Then, we present how to encode
knowledge embedding as an SMT instance. Lastly, we generalise the notion of structural
congruence for limits and present an algorithm with which we try to avoid redundancy in
the representation of limits. Overall, the outline of this chapter is designed to gradually
build on the previous steps rather than strictly separating the results which hold for the
generic intruder model and the ones that do not.

4.1 Incorporation Check

Let us combine the two results from Sections 3.4 and 3.5 to check inductivity of a limit:
given a limit L, we have to check whether JLK ⊇ p̂ost(L). So first, we have to compute
the symbolic post for the limit and then check whether it is included in L. In contrast to
Section 3.4 in which we considered arbitrary two limits for the inclusion check, we want to
exploit the connection between the two limits in our use case. Recall that

p̂osts∆(L) :=
{

ν~y.
(
〈Γ′〉 ‖ Q′ ‖ R

) ∣∣ ν~x.
(
〈Γ〉 ‖ Q

)
→∆ ν~y.

(
〈Γ′〉 ‖ Q′

)
∈ Ss

}
for b = β(∆) · γ(I)s−1 + 1 and sf(L⊗ b) = ν~x.(〈Γ〉 ‖ Q ‖ R). Let p̂osts∆(L) = {L1, · · · , Ln}.
For the same reason that we merely had to prove decidability for the inclusion of two limits
(rather than two downward-closed sets) as explained in the beginning of Section 3.4, it
suffices to check that Lj ⊆ L for every 1 ≤ j ≤ n. For each Lj , we know that it is the result
of taking one transition from ν~x.

(
〈Γ〉 ‖ Q

)
.

Approximation Intuitively, the change resulting from one transition is rather local. Ex-
cept for the process call to be reduced, the context stays the same and we simply add the
continuation. So instead of checking the inclusion for both full limits, we only compare the
differences.

49

50 CHAPTER 4. ALGORITHMIC ASPECTS

We choose one process call for which we consider some transition leading to Lj for some j:
Q = Q′ ‖ in(~z : M).D[~z] where D[~z] is an abbreviation for the continuation with which we

can easily substitute for the right messages. By construction, L ⊗ b = C[Q[~M]] for some

context C. After pattern matching with a message M [~N/~z] which might contain names
from ~c, the limit looks as follows:

Lj = ν~x.(〈Γ〉 ‖ Q′ ‖ D[~N] ‖ R) = C[D[~z]]

where the names ~c are part of D[~N]. So we have to check whether

Jν~x.(〈Γ〉 ‖ Q′ ‖ D[~N] ‖ R)K ⊆ Jν~x.(〈Γ〉 ‖ Q′ ‖ in(~z : M).D[~x] ‖ R)K

of which a lot of parts are actually the same. If we exploit this observation, we can reduce
the check to merely considering the changed part, which is P := 〈Γ〉 ‖ D[~N], is included in

E := 〈Γ〉 ‖ in(~x : M).D[~z] ‖ R.

E contains Γ as knowledge is persistent, in(~z : M).D[~z] since it is not needed to cover Q′

and R as they are all decorated by ω.
Actually, this amounts to checking membership of a process in a limit which we can again
check with Theorem 3.4 without recursion. From Lemma 9, we know that there is an n such
that P vkn dEen. This approximation to test inclusion is called incorporation check.

Example 11 (Incorporation Check). Let us consider the limit L for Example 2 given in
Section 3.6. We want to check inductivity for the first step, i.e. that the continuations of
A1[-] are captured by the invariant. As we consider the process call A1[-] which occurs in L
and its continuations in L1, we will handle the other limits symbolically by simply keeping
L2 as a sublimit:

L = νa, b, kas, kbs.
(
〈(a, b)〉 ‖ A1[a, b, kas] ‖ B1[a, b, kbs] ‖ S[a, b, kas, kbs]ω ‖
(νna.

(
〈na〉 ‖ A2[a, b, kas, na] ‖ Lω2)ω

)
.

We know that

A1[-]→ νna.(〈(na, b)〉 ‖ A2[a, b, kas, na] ‖ A1[a, b, kas]) =: P.

We will see in Section 4.3 that extending the limit by 1 suffices to check inclusion as
A1[-] does not take any input and all possible transitions of (this) A1[-] are checked.

L⊗ 1 = νa, b, kas, kbs.
(
〈(a, b)〉 ‖ A1[a, b, kas] ‖ B1[a, b, kbs] ‖
S[a, b, kas, kbs] ‖ S[a, b, kas, kbs]ω ‖
(νna.

(
〈na〉 ‖ A2[a, b, kas, na] ‖ L2 ‖ Lω2) ‖

(νna.
(
〈na〉 ‖ A2[a, b, kas, na] ‖ Lω2)ω

)
Hence, p̂ost(L) will contain the limit L′ = C[P] where C[•] is the same as L⊗ 1 but with

a hole at the place where A1[-] is. We want to prove inclusion between L and L′ = C[P].
The denotational semantics of L is the same as the one of L ⊗ 1 = C[A1[-]]. Hence, we try

4.1. INCORPORATION CHECK 51

to keep the context in both limits and check whether P can be matched using the iterated
parts, the process call in which the transition originated and the knowledge:

νna.(〈(na, b)〉 ‖ A2[a, b, kas, na] ‖ A1[a, b, kas])
vkn

〈(a, b)〉 ‖ A1[a, b, kas] ‖ S[a, b, kas, kbs]ω ‖ 〈n′a〉 ‖ (L2[n′a/na]ω) ‖
(νna.

(
〈na〉 ‖ A2[a, b, kas, na] ‖ Lω2)ω

where n′a indicates a renamed message (originally na) to avoid name clashes. It is straight-
forward to see that the knowledge embedding holds: A1[-] can be matched immediately
while b is covered by the pair (a, b). The remainder νna.(〈na〉 ‖ A2[a, b, kas, na]) can be
covered by the iterated limit in the last line. So we see that there is no need to rematch the
whole context in this example but the incorporation check works.

This incorporation check suffices in many cases but there are corner cases for which it
does not work, i.e. the check returns false even though the limit is included.

Example 12 (Parallel replaces Union). Consider two limits L1 and L2 that represent an
inductive invariant. Assume that there is some process P1 ∈ JL1K such that P1 → P2 ∈
JL2K \ JL1K. Obviously, the incorporation check for the same limit L1 fails and it is not
applicable for L2 as no common context is available. This means that the incorporation
check is a sound but incomplete inclusion check.

There are two obvious ways to side-step this problem. We currently do not consider
unions of ideals but rather parallel compositions: JL1K ∪ JL2K ⊆ JL1 ‖ L2K by downward-
closure of J-K. Equipped with this over-approximation, we can try to find a single limit
as inductive invariant for which the incorporation check is applicable. This approach is
incomplete as there are protocols whose reachable state space can only be captured by
inductive invariants consisting of several ideals. Despite of the incompleteness, we were
able to find inductive invariants consisting of single limits for all the benchmarks we have
considered. We can imagine a second possibility with the same effect: adapting the syntax
and semantics of limits to incorporate a choice-construct, i.e. +, would render the use of
a common context possible and enable an incorporation check. As the current approach
suffices for all benchmarks considered, we leave the design and implementation of the latter
idea for future work. Even with the latter theory, there are pathological examples for which
the incorporation will still fail.

Example 13 (Swapping parameters). Consider the following single process call definition
which simply swaps its parameters: Q[x, y] := τ.Q[y, x] and the initial configuration: P =
νa, b.Q[a, b]. Note that P itself is an invariant for P :

νa, b.Q[a, b] → νa, b.Q[b, a] ≡ P

by renaming a to b and vice versa. But the incorporation check fails as both names belong
to the context: Q[b, a] 6vkn Q[a, b].

Overall, the incorporation check might not be complete but serves its purpose by de-
creasing the computational workload in most cases.

52 CHAPTER 4. ALGORITHMIC ASPECTS

4.2 Irreducible Knowledge

In this section, we elaborate on how to check whether Γ1 ≤kn Γ2 for two sets of messages Γ1

and Γ2. We assume the symmetric intruder model Isy. However, we will hint at possible
generalisations in the sense of additional requirements for a general intruder model to apply
the following results. We need the following ingredients for the ≤kn-check:

• a terminating and confluent rewriting system for sets of messages which induces unique
normal forms, denoted by ird(Γ)

• a way to reduce the check whether Γ1 ` M =⇒ Γ2 ` M for every message M to a
finite set of messages, as done with Proposition 1

• an algorithm to generate normal forms from arbitrary sets of messages that is based
on the destruction rules of `

• a new derivability relation � consisting of the construction rules of ` only and a
soundness result:

∀Γ,M : ird(Γ) `M ⇐⇒ ird(Γ) �M.

Note that Proposition 1 already gives one ingredient for the general intruder model.
We will present how to instantiate the remaining ingredients for the intruder model for
symmetric encryption Isy.

4.2.1 Rewriting System for Isy
In [DOT17], a confluent and terminating rewriting system for Isy has been introduced. We
will exploit the normal forms induced by this system to establish the algorithmics to compare
two knowledge bases. Let us recall some definitions and basic properties from [DOT17].

Definition 33 (Rewriting System from [DOT17]). We define a rewriting system −→ for
sets of messages with the following inference rules.

Γ, (M,N) −→ Γ,M,N
RP

Γ, e(M)K ` K
Γ, e(M)K −→ Γ,M,K

RE

Lemma 24 (from [DOT17]). The rewriting system in Definition 33 is terminating and
confluent.

Lemma 25 (from [DOT17]). Let Γ1,Γ2 be two sets of messages. If Γ1 −→ Γ2, then
Γ1 ∼kn Γ2.

Definition 34 (Irreducible Set). A set of messages Γ is called to be irreducible if there is
no Γ′ such that Γ −→ Γ′.

By Lemma 24, we know that there is a unique and irreducible set of messages Γ′ for
every Γ such that Γ −→∗ Γ′. We denote Γ′ by ird(Γ). With Lemma 25, every set of
messages is knowledge equivalent to its irreducible set: Γ ∼kn ird(Γ).

4.2. IRREDUCIBLE KNOWLEDGE 53

Types of Rules We distinguish two different kind of rules in the derivability relation ` for
the symmetric intruder model: we call Rules PR and ER construction rules while Rules PL
and EL are called destruction rules. Construction rules may also be called introduction
rules as they introduce operators while destruction rules may also be called elimination
rules as they eliminate operators. The terminology stems from the two different perspec-
tives: construction and destruction deal with building messages from smaller messages and
destructing them again while introduction and elimination deal with the use of operators. It
is straightforward to see that the rewriting system with its rules Rules RE and RP imitates
the destruction rules. Therefore, we will basically split ` and use the destruction rules to
compute irreducible sets while we use the construction rules to check whether a message is
derivable from an irreducible set of messages. As we will use the latter construction that
yields a new derivability relation, we first assume to have an irreducible set of messages for
which we want to check derivability for some message.

4.2.2 Exploiting Irreducibility

The question to answer is whether, given two knowledge bases Γ1 and Γ2, Γ1 ≤kn Γ2 holds.
By Lemma 25 and Proposition 1, it suffices to check whether ird(Γ2) `M for every message
M ∈ ird(Γ1). As we consider irreducible sets of messages, the natural question arises in
which way we can restrict the rules of ` without sacrificing possible derivations. Intuitively,
we only want to consider construction rules. To this end, let us first consider the different
shapes of messages in irreducible sets of messages.

Lemma 26. Let Γ be an irreducible set of messages and let N ∈ Γ. Then, N = a for some
basic name a or N = e(M)K for some messages M and K and Γ 6` K.

Proof. Towards a contradiction. Assume N ∈ Γ does not have this form. We do a case
analysis on the types of messages.

N = (M1,M2): If Γ contains a pair, it is not irreducible which is a contradiction.

N = e(M)K and Γ ` K: In this case, we can apply RP and hence Γ is not irreducible which
is a contradiction.

Let us consider a knowledge base Γ and its irreducible set ird(Γ). We know that the set
of derivable messages is exactly the same: ∀M : Γ ` M iff ird(Γ) ` M . In order to have a
reduced version of `, we investigate which rule applications can occur in cut-free proof tree
for ird(Γ) `M .

Lemma 27. Let Γ be an irreducible set of messages and M a message such that Γ ` M .
Then, every cut-free derivation of M only contains applications of Rule Id, PR and ER.

Proof. Obviously, Rule Id occurs at every leaf. Both introduction rules PR and ER can occur
in the derivation tree as they simply combine messages.

Claim: neither Rule PL nor EL can appear. To prove this claim, we exploit the shape of
messages proven in Lemma 26. Γ does not contain any pair by Lemma 26 and hence Rule PL
cannot occur in the proof tree. Γ only contains encrypted messages for which the key cannot
be derived. But this is the premise of Rule EL which is the reason why it cannot be applied
in the derivation either. There are no more rules to consider, so the claim follows.

54 CHAPTER 4. ALGORITHMIC ASPECTS

This lemma enables us to establish a subrelation of `, denoted by �, for which derivability
is the same for irreducible sets of messages.

Definition 35. We define a new derivability relation � to be the relation only consisting of
the rules Rule Id, PR and ER from `.

Corollary 6. Let Γ be an irreducible set of messages and M some message. Then, Γ `M
iff Γ �M .

Proof. Follows directly from Lemma 27.

Algorithm 1 (Checking Γ1 ≤kn Γ2.). Assume that both knowledge bases Γ1 and Γ2 are
given as irreducible sets. Then, we check whether every message N from ird(Γ1) can be
derived from Γ2: Γ2 � N . This new relation makes this check very easy: First, we check
whether N ∈ Γ2. If so, we are done. If not and it is a basic name, the claim does not
hold. If not and we have an encrypted message e(M)K , we split it and check for M and K
individually. Possibly, M or K is a pair which we split and we proceed in the same way.

4.2.3 Computing Irreducible Sets

The algorithm basically is a fixedpoint iteration imitating the rewrite rules of −→.

Algorithm 2 (red(-)). Let Γ be a set of messages.
Apply the following steps until nothing changes:

1. Take all pairs out of Γ, split them and put the components back into Γ.

2. For every encrypted message e(M)K ∈ Γ, check whether Γ � K. If so, take e(M)K
out of Γ and put M and K into Γ. If not, e(M)K stays in Γ.

Lemma 28 (Correctness of Algorithm 2). For any knowledge base Γ, red(Γ) ∼kn Γ and
red(Γ) is irreducible.

Proof. First, we prove termination. By construction, Algorithm 2 imitates rewriting steps
of −→. Therefore, the fixedpoint iteration eventually stabilizes as the rewrite system is
terminating as � is a subrelation of `. It remains to prove that the result is irreducible.
There are no pairs as they will be split by definition. One could imagine that two encrypted
messages could block each other’s rewriting. The point of interest is the use of � instead
of ` in the algorithm. It is easy to see that it would be sound if we used `. So the question
arises whether the use of � will prevent us from rewriting at any point. Therefore consider
some derivation Γ, e(M)K ` K to obtain the key for an encrypted message. Again, we check
which rules could occur in the derivation tree. As we split all pairs, PL cannot occur. All
the others may, especially EL. The derivation is as follows.

Γ, e(M)K , e(M
′)K′ ` K ′ Γ′, e(M)K , e(M

′)K′ ,M ′,K ′ ` K
Γ′, e(M)K , e(M

′)K′ ` K
EL

The pattern to consider here is the left premise of this rule application. Essentially, we again
want to derive a key for an encrypted message. We know that every derivation is finite so
even for a sequence of EL applications, there is at least one in the derivation subproof, for
which no application of EL is needed, with which the whole sequence starts. For this special
subproof, there are only occurrences of Rule Id, PR and ER and we can therefore also derive
this first key by using �. By this, we can derive the second key in the next iteration of the

4.3. PATTERN MATCHING 55

algorithm. Proceeding inductively leads to the irreducible set of messages even though we
used � to derive, respectively compose, the keys.

Second, we show that all obtained intermediate knowledge bases are knowledge equivalent
to Γ. Let Γ = Γ1, · · · ,Γn = red(Γ) be the intermediate knowledge bases obtained when
applying the algorithm. The algorithm imitates the rewriting steps of −→ and hence Γ ∼kn

Γj for every 0 < j ≤ n by Lemma 25. Hence red(Γ) ∼kn Γ.

Lemma 29 (Checking Γ1 ≤kn Γ2 is polynomial). For two arbitrary knowledge bases Γ1

and Γ2, we can check whether Γ1 ≤kn Γ2 in polynomial time.

Proof. Recall that our approach to check Γ1 ≤kn Γ2 consists of two steps. First, we reduce
both knowledge bases to be irreducible by Algorithm 2 which we indicate by a primed version
of the bases. Second, check whether Γ′2 � M for every M ∈ Γ′1. It is straightforward that
the Algorithm 1 comprises the last check in polynomial time with respect to the size of M
and Γ′2. It remains to argue that Algorithm 2 produces the irreducible sets in polynomial
time and that the size of the irreducible sets is also polynomial. Considering the size, we
only split messages and never introduce new symbols, hence the result is of linear size. The
number of iterations is at most the number of derivation steps to obtain every single message
in the irreducible result. The length of derivations is polynomial for Isy. Every iteration
iterates once through the current set which is of polynomial size. Overall, Algorithm 2 needs
polynomial time.

Irreducible Knowledge is Irreducible We might want to prune further: consider the
irreducible knowledge base Γ = 〈a〉 ‖ 〈e(a)c〉. Even though we cannot reduce the second
message, we already know the encrypted content a. As we will consider knowledge bases
evolving over time, we have to ask whether it can make any difference to have the second
message in terms of derivability. Intuitively, it does not. There are two cases to consider:
First, if we never obtain the key c, the message will not be of any use. Second, suppose we
will obtain c at some point. However, it could be important for a knowledge embedding to
break:

νa.νc.〈a〉 ‖ 〈e(a)c〉 6vkn νa.〈a〉 but νa.〈a〉 vkn νa.〈a〉

as νc is to be omited in order to satisfy the constraint that every name is used at least once
in its scope.
Second, e(a)c adds a component for composing and therefore deriving new messages:

a, e(a)c � e(a)e(a)c but a 6� e(a)e(a)c .

4.3 Pattern Matching

In this section, we will describe how to efficiently implement the pattern matching which is
needed for p̂ost(-). To this end, we will refine the message size constraint s and introduce a
sizing function for patterns.

The Setting In Section 3.5, we have shown that computing the symbolic version of post(L)
for some limit L, i.e. p̂ost(L), can be reduced to considering the fixed part of L ⊗ b only.
Hence, computing p̂ost(L) can be diminished to the following problem: given P = ν~x.(Γ ‖ Q)
where Γ is irreducible and Q is a set of processes, we want to compute post(P).

56 CHAPTER 4. ALGORITHMIC ASPECTS

Let us outline the steps to consider every possible successor:

• we consider every distinct process call Q[~y] ∈ Q with its corresponding definition

• for each process call, we find a number of actions with input prefixes and continuations

• for each action, we have to produce every possible message eligible for the pattern
matching in these prefixes.

This number is finite because of a finite number of ground messages to consider and the
size bound s we imposed on messages. We assume all patterns to be implementable for
this section. For example, this can be checked as described in [DOT17] for the symmetric
intruder model Isy.

4.3.1 Patterns and Variables

We formally introduced input prefixes in(~z : M) with a vector of names to be bound and
a pattern M already. Recall that we used the syntax for messages. There is no need to
distinguish messages and patterns in the π-calculus, but it is more convenient to do so for
terminology. Hence, we also define variables for pattern matching as the names that are
bound when applying a pattern match. One can think of them as a subtype of names in the
π-calculus.

Definition 36 (Variables). Let in(~z : M) be an input prefix. We call ~z the variables of
the pattern M and denote them by fv(M). Names in M , that are not variables, are called
constants.

Note that we can only refer to fv(M) in the context of an input prefix.
Intuitively, it is clear when a message N can be matched to a pattern M . Basically, we

want the syntax tree of M to be a rooted subtree of N so that the variables in M are bound
to the corresponding subtrees of N .

Definition 37 (Pattern Match). A message N can be matched to a pattern M with vari-

ables ~z if there is a list of messages ~L such that N = M [~L/~z]. This is denoted by N �M : θ
where θ indicates the needed substitutions. A message M is called eligible for the pattern M .
We may omit θ if not needed.

Let in(~z : M).P be an action. We see that ~L are the messages to substitute for ~z in P

when matching N , leading to P [~L/~z]. This definition also ensures that constants in the
pattern are matched instantly by N : if there is a position in the pattern M where the basic
name a occurs, it ensures that the same a is in the same spot in N .

4.3.2 Forwarding

Prior to the actual pattern matching mechanism, we want to motivate a preprocessing step.
This is a frequent pattern in protocols: some principal receives a message and sends it
without modifications. It is easy to see that such a step does not contribute to the reduction
semantics in our calculus. Hence, we can omit this kind of forwarding without sacrificing
soundness. We want to rule out this kind of pattern which can be generalised to some extent.
Note that this is a static analysis step and we can hence not consider some possible knowledge
base from the environment but only consider a single input prefix and continuation.

4.3. PATTERN MATCHING 57

Definition 38 (Simple Forwarding for Isy). Consider the following action as it may occur
in a process call definition:

in(~x : M).(ν~z.(〈Γ〉 ‖ Q))

where Γ is irreducible. We say that some x ∈ ~x is simply forwarded if M ` x, x ∈ Γ and
x /∈ fv(Γ \ {x}).

Remark 5 (Simple Forwarding and Encryption Oracle). Note that x ∈ Γ requires x to
appear as a singleton on top level and x /∈ fv(Γ \ {x}) ensures that x is not used at any
other place. In case the first two conditions hold and the third does not, this action is an
encryption oracle.

If some variable x ∈ ~x is simply forwarded in some action, we simply omit x since it
does not change the reduction semantics in our calculus. To be very precise, there is a
slight change. The intruder might introduce messages leading to (νc.〈c〉)ω in the invariant
but this does not have impact on subsequent transitions as the intruder can introduce any
desired number of nonces in every step. Formally, we could easily remedy to this obstacle
by amending the reduction semantics in Definition 5 by requiring the name restrictions ~z in
the successor only to contain names that have been used in the continuation of the action.

4.3.3 All Messages up to s

We first consider a naive approach of computing all possible messages. We exemplify the
approach for the symmetric intruder model Isy and show that it is infeasible even for small
message size bounds s.

Algorithm 3 (Messages up to s). Consider an irreducible knowledge base Γ. The notation
Γ `t Γ′ is used to denote that Γ ` Γ′ and the size of all messages in Γ′ is t. We use a
parametrised notation Γ `t Γt for this algorithm. Γ(t) contains all messages of size t in Γ:
Γ(t) = {M ∈ Γ | size(M) = t}. Solely names have size 1 and therefore: Γ1 = Γ(1). From
this starting point, we construct derivable messages of larger size recursively:

Γt+1 =
⋃

M1∈Γt

M2∈Γt′ for t′≤t

{e(M1)M2 , e(M2)M1 , (M1,M2), (M2,M1)} ∪ Γ(t+ 1)

As we considered an irreducible set of messages, we know that � and ` coincide. The
rules of � only allow us to derive messages by combining messages to pairs or encryptions.
This is the reason why we can construct every message up to size s which is derivable from Γ
with this algorithm.

Example 14. Given the irreducible knowledge base Γ = a, b, e(c)k, let us compute messages
up to size 3 (and hence omit the set notation).

Γ1 = a, b Γ2 = (a, a), e(a)a, (a, b), e(a)b, (b, a), e(b)a, e(c)k

Γ3 =((a, a), a), ((a, a), b), ((a, a), (a, a)), ((a, a), e(a)a),

((a, a), (a, b)), ((a, a), e(a)b), ((a, a), (b, a)),

((a, a), e(b)a), ((a, a), e(c)k), ((a, a), a), ((a, a), b),

((a, a), (a, a)), ((a, a), e(a)a),

((a, a), (a, b)), ((a, a), e(a)b), ((a, a), (b, a)),

((a, a), e(b)a), ((a, a), e(c)k), · · ·

58 CHAPTER 4. ALGORITHMIC ASPECTS

Intentionally, we did not state all messages up to size 3 as they are numerous. Until now, we
merely considered the first message of Γ2 as the first component of a pair with all possibilities.

So let us check how many of these messages are useful for a specific input prefix.

Example 15. Given the irreducible knowledge base Γ = a, b, e(c)k and the input pattern
in(x, y : (x, e(y)k)). Let us consider all messages up to size 3.
The subpattern e(y)k can only be matched by e(c)k and hence y will be bound to c for every
valid pattern match. We can pair this encryption with any message of size up to 2 without
exceeding the size bound. Therefore, x can be bound to any of the following messages:
a, b, (a, a), e(a)a, (a, b), e(a)b, (b, a), e(b)a, e(c)k

This example demonstrates that all messages up to some size outnumber the eligible
messages as they all need to satisfy the constraints given by the constants in a pattern.
We therefore elaborate on ways of pruning the message space by investigating on the input
pattern and especially its constants. In preparation for this, we introduce a concept which
can be considered to be a more fine-grained version of the size bound s for messages originally
suggested in [DOT17].

4.3.4 A Sizing Function for Variables

For decidability, a general size bound for messages is sufficient and as we did not consider
the algorithmics, it was a neat way not to deal with unnecessary case distinctions which
would have obscured the result. For computability, a more fine-grained version of a size
bound is advantageous as it enables us to be very specific about the size of messages to be
bound in pattern matches. Therefore, we make use of an additional sizing function which
indicates the maximal size of a message bound to a variable in a pattern.

Constructing these bounds resembles the process of computing a size bound for messages
in general. By computing a bound, we mean a natural one in the sense that honest executions
of the protocol are possible. Natural (general) size bounds will always be at least 2. For 0,
we cannot have any messages whereas there is no way to encrypt messages for a size of 1.
For the general size bound, one considers such an honest run and annotates which variables
are considered to be nonces, i.e. of size 1. Then, one propagates this information due to
the execution of the protocol and hence obtains a maximum size for messages. Keeping the
intermediate information about the sizes enables us to construct a sizing function from it.
This function can also be used to enforce the size bound on messages in input prefixes. It is
straightforward to amend the sizing function in a way such that the size bound for messages
becomes obsolete. We simply have to compute the size and decrease the size annotations if
the size bound could be exceeded by the message we use for the pattern match.

4.3.4.1 Pattern Matching with Sizing Functions

We first present the high-level idea and then establish the theory formally. In our decidability
result, we established a large number to extend the limit with and then only considered
the fixed part to compute p̂ost. We needed this large number as we considered all input
patterns simultaneously and did not look into the input patterns individually. As stated
in the definition of p̂ost, we extend with the same number for every input prefix but the
latter is determined by the biggest input prefix in some sense. Hence, one improvement is
to keep individual extension factors for every input prefix but there is more potential for
improvement.

4.3. PATTERN MATCHING 59

The following procedure is applied for every action of every process call in L. We then
consider a specific action with its input prefix and its pattern and continuation. In order
to investigate on the format of the pattern, we find out which constants of the pattern are
derivable from the knowledge base. By this, we can see which parts of the pattern can or have
to be constructed and which ones have to stem from the knowledge base. Based on these
observations, the limit is extended appropriately and all possibilities for the pattern match
are considered. For every resulting continuation, we check whether the latter combined with
the fixed part is in L. In the following sections, we explain the different steps in depth.

Definition 39 (ζ, tracesζ∆(-), (ζ, k)-bounded). A sizing function maps (some) names to
sizes:

ζ : N ⇀ N.

We require every substitution θ to respect ζ, i.e. for every name x, size(θ(x)) ≤ ζ(x).
Note that pattern matching uses substitution and hence variables can also have sizes. By
definition, restrictions can only have size 1. We extend the sizing function in a natural way:

ζ(e(M)N) = ζ((M,N)) = 1 + max(ζ(M), ζ(N))

Let tracesζ∆(P) denote all traces respecting the sizing function, i.e. in every step all substi-

tutions respect ζ. A process is (ζ, k)-bounded if tracesζ∆(P) ⊆ D∗k.

Example 16. For an input prefix, we abuse notation and write

in((m : size 1) : (m,n))

to denote that ζ(m) = 1.

4.3.4.2 The Pattern and its Constants

Example 17. Let us consider the following input prefix of Q[~M]: in(x : e(x)k) and assume

that Q[~M] is part of some limit L. Of course, the process call Q[~M] requires the key k. But
for the intruder, there are two possibilities. If there is a knowledge base of any expansion
of L in which k is revealed, we can construct a great number of messages which are eligible
for the pattern match. But if not, we can only use exactly the messages with this pattern in
the (irreducible) knowledge base which could be {e(a)k, e(b)k, c} for instance. In this case,
we only need to check for two different messages. Additionally, the intruder cannot generate
messages using intruder names that are eligible for the pattern.

To decide which case of the latter example applies, we need to find a way to know whether
such a key or any other component in a pattern match can be revealed or not. Surprisingly,
the absorption axiom enables us to prove that expanding by 1 is enough to decide this. In
case the key (or another part of the pattern) is derivable, we will apply the idea for the
decidability result and expand as often as needed to have a distinct name with the same
path on every position of the pattern. In order to keep the factor as small as possible, we
will make use of the sizing function for variables.

Let us consider Example 17 again. We want to examine whether k is derivable in any
instance of L. As k might occur in a process call in an iterated part of L, there is a number
of k’s. It does not matter which k is revealed as they are in some way corresponding to each
other if we rename the expansion.

60 CHAPTER 4. ALGORITHMIC ASPECTS

4.3.4.3 Corresponding Messages

We will establish a relation between messages to recognise corresponding messages. Thereby,
we divide messages into classes and it suffices to analyse whether one member of this class is
derivable. We want to find out for two structured messages whether they are corresponding
to each other in the sense that the names used in the same position of both messages actually
stem from the same name in the limit.

Example 18. Consider a limit L = (νx, y. · · ·)ω where we merely consider the names. We
expand L by 2 and obtain νx1, x2, y1, y2.(· · · ‖ · · ·) by keeping the original names as prefixes.
Even though e(x1)(y1,y2) and e(x2)(y2,y1) are different, these messages correspond in some
way as the names all stem from the same original name.
In contrast, e(x1)y1 and e(x1)y2 should not be considered corresponding as both names stem
from the same component of the expansion in the first message but they do not in the second
case.

Example 19. More precisely, we also need to consider nested expansions. Let νx.(νy. · · ·)ω
be a limit which leads to νx, y1, y2. · · · if one expands by 2. In this case, e(x)y1 and e(x)y2
should be considered to be corresponding.

Recall the source paths as defined in Definition 24. We introduce some terminology to
distinguish ω’s from other elements on the path. Let us explain how to map a path to a
limit formally.

Definition 40 (Paths for Limits). Let L be some limit and Pπ be a source-path annotated
instance of L. Let π′ be some path from the annotations. With π′(L), we denote the
syntactical element that is found when applying π′ to L. Since ω’s expand to replications
of components, a path might refer to a second component that does not exist in the limit.
We therefore implicitly apply the path for the single ω-component.

Example 20. Consider the following limit

L = νx.(νy, z.(Q[x, y] ‖ Q[z, x]))ω

and the instance with its path annotations

dLe2 = νxε.(νy′00, z
′
000.(Q[xε, y

′
00]0000 ‖ Q[z′000, xε]0001))00 ‖0

(νy′′01, z
′′
010.(Q[xε, y

′′
01]0100 ‖ Q[z′′010, xε]0101))01)

and the different paths with their components:

π1(L) = x for π1 = ε

π2(L) = ω for π2 = 0

π3(L) = y for π3 = 00

π4(L) = z for π4 = 010

π5(L) = Q[x, y] for π5 = 0000

π6(L) = Q[z, x] for π6 = 0001

Note that we implicitly apply the path operator to names in process calls.

Definition 41 (ω-paths and ω-labels). Let L be some limit and Pπ be some source-path
annotated process that is an instance of L. A path π of P is an ω-path just if π(L) = ω.
Every component of a path π that refers to an ω is called ω-label.

4.3. PATTERN MATCHING 61

Technically, ω-paths are sequences of numbers whereas ω-labels are numbers. We denote
the ith element of some path π by π[i] while π[0..i] denotes the first i + 1 elements. We
introduced this terminology to have context-sensitive substitutions for ω-labels.

Definition 42 (Consistent ω-label-substitutions). Let L be a limit and (πi)(0≤i<n) all paths
from the path annotation for some process P ∈ JLK. A substitution θ : (πi)(0≤i<n) → N∗ is
called a ω-label-substitution just if only ω-labels in (πi)(0≤i<n) are substituted:

θ(πi) = π such that ∀j : πi[j] = π[j] ∨ πi[j] = ω.

We call a ω-label-substitution θ consistent if there are no contradictions for common prefixes
of paths:

∀i, j < n, it holds that θ(πi)[0..k] = θ(πj)[0..k] for every k : πi[0..k] = πj [0..k].

Definition 43 (Shape of Messages). Let M1 and M2 be two messages. We say that M1

and M2 have the same shape iff θ(M1) = θ(M2) for θ : fn(M1)] fn → {a} for some fresh
name a.

Note that we cannot annotate whole messages but we can annotate the names used in
messages as done for the process calls in Example 20.

Definition 44 (Corresponding Messages). Let L be a limit, n ∈ N a number and ν~x.(Γ ‖ Q)
be the standard form of dLen. Furthermore, let M1 and M2 be two messages of the same
shape such that names(Mi) ⊆ ~x. We call M1 and M2 corresponding iff there is a consistent
ω-label substitution θ for the paths of names in M1 such that θ(π1) = θ(π2) for every pair
of paths for which there is a position in M1 and M2 where π1 (π2) is the path for the name
in M1 (M2). We denote two corresponding messages by M1 ≈M2.

Note that even though the relation is not symmetric by definition, it is straightforward to
construct a substitution θ′ which renames ω-labels from M2. It is also transitive and reflexive
and hence an equivalence relation with which we can split messages into equivalence classes.

We used an existential quantification for simplicity in the definition. But it is straight-
forward to define an algorithm that constructs such a substitution θ if it exists and hence
checks whether M1 and M2 are corresponding.

Algorithm 4 (Corresponding Messages). For two messages M1 and M2 of the same shape,
we iteratively construct a ω-label-substitution. Start with an empty substitution θ. For
every position in M1 (and M2) that is filled with names n1 and n2 with the respective
source paths π1 and π2.

• the lengths of π1 and π2 coincide.

• we add θ(π1) = π2 to the substitution and check whether θ is still consistent. If so, we
proceed. If not, M1 and M2 are not corresponding.

We are now turning back towards our goal, i.e. finding out how many distinct names
are needed to generate every possible eligible message for a pattern without sacrificing
completeness.

Definition 45 (Number of Distinct Instances). Let M be a message constructed from path-
annotated names. Let (πi)0≤i<n be the paths of all names occurring in M . We define a set

62 CHAPTER 4. ALGORITHMIC ASPECTS

of sets of paths as indices so that there is common prefix up to some ω-label and all the
indices for the latter are different:

SM ={I ⊆ [0, n) | ∃k :(
πi[k + 1] = ω for every i ∈ I ∧
(π′i[0..k] = π′′i [0..k] ∧ π′i[k + 1] 6= π′′i [k + 1]) for all i′, i′′ ∈ I

)
}

Based on this set, the number of needed distinct expansions is the maximal cardinality of
any of these sets.

µ(M) = max(|s| | s ∈ SM).

Exploiting the absorption axiom, we will show that it suffices to expand µ(M) times in
order to examine whether M (or any corresponding) message can be derived.

Lemma 30. Let L be a limit with sf(L) = ν~x.(〈Γ〉 ‖ Q ‖ R). With sf(dLen) = ν~xn.(Γn ‖
Qn), we denote the standard form of an expansion by any n ∈ N for which we do not
rename names in ~x. Let M be a message containing at least one name from an iterated
part, i.e. fn(M) 6⊆ ~x. Let m ∈ N be a number such that m ≥ µ(M), m ≥ 1 and Γm+1 `M .
Then Γm `M ′ for some message M ′ such that M ≈M ′.

Proof. By Lemma 8, we know that ν~xm.(Γm ‖ Qm) vkn ν~xm+1.(Γm+1 ‖ Qm+1). Therefore
and as they are stemming from the same limit, there is a renaming s.t.

sf(dLem+1) ≡ ν~xm.ν~y.(Γm ‖ Γ ‖ Qm ‖ Q)

for some Γ and Q. Usually, we only know that Γm ≤kn Γm+1 but as no rewriting takes place,
we can split the knowledge base in the part which is also present in the m-expansion and a
remainder. This remainder stems from the increased expansion factor. As we require M to
contain at least one name from an iterated part, we know that m > 0. As m ≥ µ(M), we
can assume that names(M) ⊆ ~xm by α-renaming.
We know that Γm,Γ `M and want to show that Γm `M . Γ is the remainder of the larger
expansion for which the set of names ~y is unique. As m ≥ 1, we may split Γm = Γm−1 ‖ Γ′

such that Γ = Γ′[~y/~y′]. Hence, we can apply Corollary 3 and know that Γn ` M so the
claim follows.

With this lemma, we can reduce the factor to expand with to µ(M) to check whether
some arbitrary message M is revealed. Let us consider our use case in which we want to
check whether a part of a pattern in an input prefix can be constructed again. We see that
all names used in this pattern stem from the same instance of expansion, i.e. there is a name
with some path such that every other name’s path is a prefix of the latter. Therefore, we
know that µ(M) = 1 for messages from input prefixes. This fact is stated in the following
corollary.

Corollary 7. For any limit L and (sub-)message M in some input prefix, it is sufficient to
expand L by 1 in order to decide whether M is derivable in any instance of L.

Remark 6 (On the Importance of Correspondence). The concept of correspondent messages
can easily be generalised to sets (or lists) of names. As we will see in the next section, we
will encode the check for knowledge embedding as an instance for an SMT solver. There,
the concept of corresponding names could be advantageous in combination with predicates
in order to rule out several isomorphic solutions for mappings of names. This is one of
the reasons why we presented all these concepts even though it finally can be reduced to
expansions by 1.

4.3. PATTERN MATCHING 63

By now, we know how to examine whether some part of the input prefix is derivable.
Next, we want to explain how to use this systematically in input prefixes.

4.3.4.4 Computing the Set of Variables to be Filled

In any input prefix, there are two different types of variables. In case the surrounding
structure of a variable cannot be derived from the knowledge base, we can only use eligible
messages for this subpattern and such a variable will never be substituted for a freshly
composed structured message. In case the surrounding structure can be derived, we may
construct a message which will be substituted for this variable. Therefore, we have to
generate a sufficiently high number of fresh names.

To figure out the needed expansion factor for every input prefix individually, we need
to compute the set of variables of an input prefix which may be filled with fresh names.
We compute this set in the following setting: We expanded a limit L by 1 and have an
irreducible knowledge base Γ. By Corollary 7, Γ is enough to figure out whether parts of the
input prefix will be revealed in any instance of L. The input prefix is denoted by in(~x : M).

Based on this, we can compute the set of variables to be filled. Intuitively, we need to
generate fresh names for a variable if we can construct the remaining pattern from Γ. As a
variable can occur several times in a pattern, we might come to different conclusions about
its necessity for fresh names. In this case, the negative conclusion outweighs the positive
one as the surrounding subpattern can not be constructed for at least one occurrence.

Example 21. As an example, one can consider the input prefix used by S in the encoding
of the Otway-Rees protocol where m occurs three times, which is modelled in Section 5.2.

Algorithm 5. Given a pattern M with variables ~x and an irreducible knowledge base Γ, we
describe an algorithm to compute the set of variables which can be filled with fresh names.
We therefore annotate the syntax tree of the pattern. To do so, we use a set of symbols
to indicate the options. Given a node C in the pattern tree, C indicates that a message is
derivable or a pattern can be constructed from its components whereas E means that it can
be matched with a message which is eligible. ⊥ means that none of this is the case.
For simplicity, we traverse the tree twice but the whole process could be executed in one
traversal. First, we prepare the base values of the annotation needed by the algorithm.

• For every (biggest) subtree T inducing a message N ,
ann(T) = C if Γ � N and ann(T) =⊥ if Γ 6� N .

• For every variable x, set ann(x) = C.

Then, we propagate this information bottom-up. Every inner node in such a syntax tree has
exactly two children. We describe the step of combining the information of two children C1

and C2 in an ancestor A for every function individually.

ann(A) :=

C if ann(C1) 6=⊥ ∧ ann(C2) 6=⊥
E if ∃N ∈ Γ s.t. N � A ∧ (ann(C1) =⊥ ∨ ann(C1) =⊥)

⊥ otherwise

This procedure results in an annotation of the syntax tree so that we know for every
node whether the parts of the induced pattern can be constructed from its components or
is only available through eligible message(s). In case the root is annotated by ⊥, there is no
way to construct a message which is eligible for the pattern. Otherwise, we compute two

64 CHAPTER 4. ALGORITHMIC ASPECTS

sets of variables based on the annotations. The set A holds variables which can be filled
whereas B holds variables which cannot since they are part of some subpattern for which
only an eligible message exists.
We traverse the tree top-down and do the following in every inner node:
As long as it is annotated by C, we keep on descending in both children. In case we find a
node annotated by E , we add all variables contained in the subpattern induced by this node
to B. In case we reach a terminal node consisting of a variable, we add it to A. We do not
need to consider ⊥ as it can only occur for children of E-annotated nodes where we do not
pursue. The set of variables to be filled which we wanted to compute is exactly V = A \B
because A contains all variables occurring in patterns we can construct and B consists of
all variables which are fixed by eligible messages.

Correctness One interesting part is that we only consider messages in the irreducible
knowledge base to check whether there is an eligible one. We would have to care about
every derivable message which might be eligible. To rule out doubts about this, we state
and prove the following lemma.

Lemma 31. Let M = e(M1)M2
or M = (M1,M2) be a pattern and Γ be an irreducible

knowledge base. If there is a message N such that N �M and Γ ` N but M /∈ Γ, the above
algorithm would annotate this node with C.

Proof. As Γ is irreducible, we know that Γ ` N and Γ � N are equivalent by Corollary 6.
Therefore, we can split N in its components contained in Γ. Splitting the pattern in the
same way leads to a set of subpatterns for which we have eligible messages (and variables
which are denoted as C). Thinking of an execution of the algorithm, it will either annotate
a node with C in any case or find an eligible message in Γ and annotate it with E . In both
cases, the algorithm will propagate non-⊥ annotations up to M . As it only annotates with C
and never with E in case none of the underlying results were ⊥, we know that it is C as the
annotations for M1 and M2 were non-⊥. This proves the claim.

Possible Improvement In case a message is eligible for a subpattern, we could keep the
witness θ so that we know the substitutions for this message. By this, we might be able
to keep track of contradicting substitutions and rule them out quickly. Since this pattern
does not occur very frequently in our benchmarks, we refrained from implementing it for
this procedure. But we rule out contradicting substitutions immediately when computing
the set of final substitutions. There are cases where variables are bound twice which is why
we decided to keep track of variables that are bound by eligible messages so that we do not
have to consider different substitutions. Indeed, we need to ensure that we can construct
the appropriate messages for variables from B.
Nevertheless, one could not keep such substitutions in general. In case we needed to extend
by more than 1, we assume that there are more eligible messages for different subpatterns
in case it is annotated with E . One could also think of tracking whether a pattern is
constructable and eligible at the same time but we will also try to find eligible messages if
a subpattern is considered to be constructable for convenience.

4.3.4.5 Messages to Fill Variables

Based on the variables that can be filled, we have to ensure that there are enough names
from the same position in the original limit to construct these messages. We can use the
sizing function ζ to determine the number of names that are needed to this end. The number

4.3. PATTERN MATCHING 65

of distinct names, which are needed, is then straightforward to compute as the sum of all
names needed for every single variable:

t =
∑
v∈V

2ζ(v) − 1

Since we have to consider the case that every such name has the same path in the limit,
this is also the factor we have to extend with because of the variables. Additionally, this
is the number of different names the intruder can construct to influence the pattern match.
Hence, we will incorporate a vector of t fresh names ~c according to the reduction semantics.

4.3.4.6 The Case of Multiple Eligible Subpatterns

There is one case left which might lead to increasing the factor to extend with.

Example 22. Consider the following process:

P = νk.(νm.〈e(m)k〉)ω ‖ in(x, y : (e(x)k, e(y)k)).Q[x, y]

The two subpatterns e(x)k and e(y)k are equal up to renaming of variables. If we extended
only once in this scenario, we would always have Q[m,m] as continuation where m stems
from the iterated limit. Indeed, we should also consider the continuation Q[m1,m2] where
m1 and m2 have the same path in the limit but stem from different expansions.

This example illustrates the issue we want to tackle. We refrain from formalising the
relation these two subpatterns have as there are more subtle connections we have to incor-
porate. In a similar way as a message can be eligible for a pattern, a pattern can be eligible
for another one. Therefore, we generalise this concept. Intuitively, we intend to find every
two patterns M1 and M2 such that M � M1 =⇒ M � M2 for every message M . We
formalise this in the following way.

Definition 46 (Eligible Patterns). Let M1 and M2 be two patterns. We call M1 eligible
for M2 if there is a substitution θ from variables of M2 to messages and variables of M1 such
that M2θ = M1.

This relation is reflexive, transitive and anti-symmetric up to renaming of variables. In
Example 22, we considered a special case of this relation but we also want to give an example
in which both subpatterns are not equal up to renaming of variables.

Example 23. Let x, y and z be variables and a and k be names. Consider the following
two subpatterns:

e(x, y)k and e(z, a)k

The second pattern is eligible for the first one as we can substitute the variable z for x and
the name a for y.

This scenario considers only subpatterns for which we have eligible messages in the
irreducible knowledge base. As we computed an over-approximation of variables we have to
fill, we consider an over-approximation of eligible messages we have to compute. We can find
the minimum extension factor by finding the longest chain of subpatterns that are eligible
for each other. One could try to be a bit more fine-grained at this point and construct
different versions for which the set of variables to be filled will be larger and the one of
eligible messages we need is smaller for instance but the overhead to distinguish these cases
will probably not pay off in the end.
Note that this feature is not implemented in our tool and such chains need not be input to
obtain sound results.

66 CHAPTER 4. ALGORITHMIC ASPECTS

4.3.4.7 Constructing Substitutions

By now, we computed the factor to extend with. When extending with some number greater
than 1, there is more than one process call for every process call we considered in the limit.
As all of them have the same behaviour in terms of possible one-step-transitions, it suffices to
check only one of these. It remains to elaborate on how to compute the possible substitutions
for the input prefix and the continuation. Even though we consider extension here, i.e. the
version keeping ω’s, we only consider the fixed part of the limit due to the definition of p̂ost
for the transitions. We will use the iterated parts to check whether the continuation is
included in the limit.

We have an irreducible knowledge base Γ stemming from a sufficiently big expansion
and an input prefix in(~x : M) with an annotated pattern M . In a naive approach, we
would start at every terminal and construct all possible substitutions, combine them when
going up and rule out contradicting substitutions. But we exploit to exploit the annotated
properties of parts being constructable, derivable or eligible. We cannot construct messages
for subpatterns that are marked with E . Therefore, it suffices to compute all eligible messages
for these subpatterns which are members of Γ by Lemma 31. Because of the extension, there
might be more messages of this shape than before and hence we have to check this again but
it will not overrule our result whether the subpattern is constructable, eligible or neither of
both. All of them imply substitutions for the variables contained in this subpattern. There
might be contradictions when combining substitutions. This is why we want to keep track of
substitutions due to eligible messages and use this information when we construct messages
for variables.

Algorithm 6 (Constructing Substitutions). Traverse the syntax tree from top to bottom,
doing the following — depending on the annotation.

E : Compute all possible substitutions for variables contained in this subpattern by check-
ing for eligible messages in Γ and stop descending.

C: Keep on descending if possible. If not, it is a variable and we check for every sub-
stitution in the global state whether it can be derived, as it is needed to construct
the message. If there are restrictions in the global state, we compute all possibilities
respecting the size annotation.

Technically, we need to ensure that every node annotated with E is processed before the
terminal nodes that are annotated with C so that all possible substitutions are in the global
state. The shape of annotations allows this as C only occur higher in the syntax tree.

Eventually, inclusion needs to be checked for every single inclusion where we can use the
incorporation check as described in Section 4.1.

4.4 Finding Candidates for Invariants

The applications we presented in Section 3.1 incorporated very expensive enumeration tech-
niques which are a neat means to show decidability but are far from being applicable to
practice. Recall that the idea was to enumerate all candidates for invariants and check their
inductiveness and whether the initial protocol configuration is included.

4.4. FINDING CANDIDATES FOR INVARIANTS 67

Acceleration in the style of Karp and Miller There is a way to generate these candi-
dates systematically by acceleration techniques that are similar to the Karp-Miller algorithm
for Petri nets. [ZWH12] suggests a very general way of widening in the following way: given
an initial protocol configuration, consider a transition sequence P1 →∗ P2 with P1 vkn P2.
The knowledge embedding entails the following two normal forms: sf(P1) = ν~x.(Γ ‖ Q)
and sf(P2) = ν~x, ~y.(Γ ‖ Q ‖ P). As we can start the same transition sequence from P2

again, we can produce ν~y.P arbitrarily often. Hence, we summarise by accelerating to
ν~x.(Γ ‖ Q ‖ (ν~y.P)ω).

This idea can be extended to limits. Suppose, we are given some initial limit L0 that
includes the initial configuration of a protocol. We explore the (finitely-branching) transition
system that is induced by p̂ost. For each of the limits that we reach, we check whether some
limit on its path is included in this most recent one. If so, we apply a widening operator to
obtain an over-approximation of the acceleration for this trace. As knowledge embedding
is a wqo, we know that there cannot be infinite ascending chains and hence the procedure
terminates. It returns a finite union of limits that is inductive by construction.

To get an intuition about how computationally intensive this procedure is, let us in-
vestigate about the number of inclusion checks in terms of the minimum and maximum
branching factor as well as the length of traces in the induced transition system. Consider
an initial configuration for which we know that the minimum (maximum) branching factor
is b1 (b2) and the minimal (maximal) length of traces in the induced transition system is
given by t1 (t2).

The number of inclusion checks is given by

Cj :=
∑

0≤i<tj

i · bij =
tj · b

tj+1
j − tj · b

tj
j + bj

(bj − 1)2

where j ∈ {1, 2}. C1 denotes the minimum number and C2 the maximum number of inclusion
checks. Of course, this is a rough approximation but gives the intuition we were aiming for.
For inclusion checks, we already discussed the incorporation check that suffices in many
cases. Nevertheless, the latter is not complete as discussed before. This observation led to
the choice to replace union of two ideals by parallel composition if possible which we exploit
in our coarser version of widening.

Coarser Widening To find candidates for invariants, we employ a form of widening as in
abstract interpretation. For a given limit L, we want to construct some inductive invariant I
such that JLK ⊆ JIK. The idea is quite straightforward: for every possible transition in L, we
compute the corresponding limit given by the definition of p̂ost and check whether the limit
is already included in L. If so, we are done. If not, we incorporate the continuation into L
— possibly decorated with an ω if the same transition can happen again — and respect
the common context thereby. We continue as long as there are no transitions left but may
timeout before for practical reasons. Theoretically, it does terminate for the same reason of
our domain being a wqo. In case there are no transitions left, we have found an inductive
invariant.

Algorithm 7 (Coarse Widening — One Step). Let L be a limit in standard form: L =
ν~x.(〈Γ〉 ‖ Q ‖ R). With QR, we denote all process calls that are present in the syntax tree
of R, i.e. not only the ones on the first level. We mark every process call in Q and QR with
some label k ∈ K. For QR, we can thereby distinguish where the different process calls are
stemming from.

68 CHAPTER 4. ALGORITHMIC ASPECTS

1. Compute the factor to branch with, i.e. b and expand the limit L by b:

sf(dLeb) = ν~x, ~y.(〈Γ′〉 ‖ Q′)

2. Let Qk[~M] be any process call labelled by k ∈ K such that

sf(dLeb) = ν~x, ~y.(〈Γ′〉 ‖ Qk ‖ Q′′)

and define a context C[-] for the original limit:

C[Qk[~M]] = ν~x.(〈Γ〉 ‖ Q ‖ R).

Now, collect all continuations of possible transitions for Qk[~M] in some set D. Filter
the continuations and only keep the ones which are not included in L already and
obtain D′. We could annotate the different continuations with the transition that
produced them to possibly backtrack concrete runs. In case D′ is empty for every
possible label k ∈ K, we are done.

3. We combine the continuations from D′ to some process PD′ . Finally, we incorporate
PD′ into the limit L by adding it to the context C:

L′ := C[Qk[~M] ‖ PωD′]

where we decorate PD′ with an ω since Qk[~M] can reproduce the continuations.

4. Check whether the security property holds for the amended limit L′.

If so, proceed with the amended limit in the same way. If not, return and let the user
check interactively how to proceed.

Note that there is no need to check the continuation of every process call contained in
the expanded limit. We labelled the different process calls before expanding as another
process call with the same label produces the same continuations up to α-renaming. Hence
it suffices to only check one process call for each one occurring in the original limit.

The Case of Failure In case a limit violating the security protocol is returned, we have to
interact and check why the property is violated: it is possible to backtrack how the different
parts leading to the violation became part of the invariant based on the annotations. Note
that we currently do not support this in the tool but it was always easy to see why the
property fails in our experiments. There are two reasons for the algorithm to fail. First, the
protocol does really violate the property and we have then found an actual run violating
the property. Second, the inductive invariant only violates the property as it has been over-
approximating too much and the property actually does hold. The latter can also occur
due to the fact that we do not consider unions of ideals but single ideals as candidates for
invariants.

Combining Continuations We have not explained yet how to “combine” the continua-
tions in step 3 of Algorithm 7. Let us exemplify the approach with an actual protocol and
explain heuristics to combine continuations in a smart way whilst generating the invariant.

4.4. FINDING CANDIDATES FOR INVARIANTS 69

Example 24 (Generating an Invariant). In this example, we generate an invariant for a
variant of the Yahalom protocol as presented in [DOT17]. As explained in Section 4.3, we
will omit simple forwarding so that the protocol can be encoded as follows:

S1[x, y, kxs, kys] := in(nx, ny : (y, e(x, nx, ny)kys
)).

(νkxy.(〈e(y, kxy, nx, ny)kxs
〉 ‖ 〈e(x, kxy)kys

〉 ‖ S1[x, y, kxs, kys]));
A1[x, y, kxs] := τ.(νnx.(〈(x, nx)〉 ‖ A1[x, y, kxs] ‖ A2[nx, x, y, kxs]));
B1[x, y, kys] := in((nx : size(1)) : (x, nx)).

(νny.(〈y〉 ‖ 〈e(x, nx, ny)kys〉 ‖ B1[x, y, kys] ‖ B2[ny, x, y, kys]));
A2[nx, x, y, kxs] := in(ny, kxy : e(b, kxy, nx, ny)kxs

).(〈e(ny)kxy
〉);

B2[ny, x, y, kys] := in(kxy : e(x, kxy)kys
).(〈e(ny)kxy

〉);

with the start configuration

B1[a, b, kbs] ‖ A1[a, b, kas] ‖ S1[a, b, kas, kbs] ‖ 〈(a, b)〉.

where we make the names of the participants publicly available. This configuration is also
the starting point to generate the invariant. We may omit process call parameters and write
A1[-] instead of A1[a, b, kas]. Furthermore, note that x in most cases corresponds to a while y
corresponds to b. First, we check for all input prefixes whether the pattern can be matched
by any message. For S1[-], this is not the case. For both A1[-] and B1[-], we can match the
pattern. Now, we can choose the process call. The protocol design suggests that A takes
the first step so we choose A1[-]. With its τ -transition, there is only one continuation to
consider:

νna.(〈(a, na)〉 ‖ A1[a, b, kas] ‖ A2[na, a, b, kas])

Since a and A1[-] are already covered by the initial configuration, we only have to add

L1 := νna.(〈na〉 ‖ A2[na, a, b, kas)

and decorate with an ω as A1[-] may always reproduce it. We obtain:

B1[a, b, kbs] ‖ A1[a, b, kas] ‖ S1[a, b, kas, kbs] ‖ 〈(a, b)〉 ‖ Lω1

Now, B2[-] is the only one to fire transitions. The intended message for nx is na which is
a nonce. Hence we use the sizing function ζ to restrict nx to be a nonce and do not use a
global message size constraint as this requires nx to be a nonce in e(x, nx, ny)kys

. There are
three possible messages which can be substituted for nx: a, b and na. We combine these
three continuations by only using one single fresh name and put the messages in parallel:

L2 := νnb.(〈e(a, na, nb)kbs〉 ‖ 〈e(a, b, nb)kbs〉 ‖ 〈e(a, a, nb)kbs〉 ‖ B2[nb, a, b, kbs]).

Since L2 does use the name na from L1, we add L2 in L1:

L1 := νna.(〈na〉 ‖ A2[na, a, b, kas) ‖ Lω2 .

Now, S1[-] can use all these three messages produced by B1[-] as input and we can combine
the continuations:

L3 := νkab.(〈e(b, kab, b, nb)kas
〉 ‖ 〈e(b, kab, a, nb)kas

〉 ‖ 〈e(b, kab, na, nb)kas
〉 ‖ 〈e(a, kab)kbs〉);

and augment L2:

L2 := νnb.(〈e(a, na, nb)kbs〉 ‖ 〈e(a, b, nb)kbs〉 ‖ 〈e(a, a, nb)kbs〉 ‖ B2[nb, a, b, kbs] ‖ Lω3).

70 CHAPTER 4. ALGORITHMIC ASPECTS

For the next step, both A2[-] and B2[-] can match the pattern. We will again choose A2[-] as
suggested by the design of the protocol. The input prefix can only match one of the messages
in L3 which results in e(nb)kab

. The latter is actually subsumed by the continuations as
produced by B2[-]:

L4 := 〈e(nb)(na,nb)〉 ‖ 〈e(nb)(b,nb)〉 ‖ 〈e(nb)(a,nb)〉 ‖ 〈e(nb)kab
〉.

We add L4 to L3. There is no reason to decorate it with ω due to persistence of messages:

L3 := νkab.(〈e(b, kab, b, nb)kas〉 ‖ 〈e(b, kab, a, nb)kas〉 ‖
〈e(b, kab, na, nb)kas〉 ‖ 〈e(a, kab)kbs〉 ‖ L4).

We could have lifted the messages not containing kab but we refrain from doing this. Overall,
the generated invariant is:

B1[a, b, kbs] ‖ A1[a, b, kas] ‖ S1[a, b, kas, kbs] ‖ (a, b) ‖ Lω1

L1 := νna.(〈na〉 ‖ A2[na, a, b, kas) ‖ Lω2
L2 := νnb.(〈e(a, na, nb)kbs〉 ‖ 〈e(a, b, nb)kbs〉 ‖ 〈e(a, a, nb)kbs〉 ‖ B2[nb, a, b, kbs] ‖ Lω3)
L3 := νkab.(〈e(b, kab, b, nb)kas

〉 ‖ 〈e(b, kab, a, nb)kas
〉 ‖

〈e(b, kab, na, nb)kas
〉 ‖ 〈e(a, kab)kbs〉 ‖ L4)

L4 := 〈e(nb)(na,nb)〉 ‖ 〈e(nb)(b,nb)〉 ‖ 〈e(nb)(a,nb)〉 ‖ 〈e(nb)kab
〉.

4.5 Encoding for SMT-Solver

We will answer the question whether P1 vkn P2 holds, given two processes P1 and P2 in
standard form Pi = ν~xi.(〈Γi〉 ‖ Qi) for i ∈ {1, 2}. First, we will investigate the complexity
of this question. Second, we will present how to encode this problem as an SMT instance.

4.5.1 Complexity

To start with, we consider the pure fragment of our π-calculus, i.e. we restrict ourselves
to names and process calls. In [KM08], it was shown that structural congruence is graph
isomorphism-complete for the pure π-calculus. We do not check structural congruence but
(knowledge) embedding for P1 vkn P2. Intuitively, this result suggests that checking em-
bedding is subgraph isomorphism - complete.

Recall the definition of graphs. A graph is a two-tuple (V,E) where V is a set of vertices
and E ⊆ V × V is a set of edges. A graph is called undirected if ∀u, v : (u, v) ∈ E =⇒
(v, u) ∈ E.

Definition 47 (Subgraph Isomorphism from [Weg05] 1). Let G1 = (V1, E1) and G2 =
(V2, E2) be two undirected graphs. G1 is isomorphic to a subgraph of G2 if there is a
subgraph of G2, denoted by G′2 = (V ′2 , E

′
2) with V ′2 ⊆ V2 and E′2 ⊆ E2, such that there is a

bijective function f : V1 → V ′2 with (u, v) ∈ E1 =⇒ (f(u), f(v)) ∈ E2.

1Note that the definition is not given precisely this way but we combined the definitions of subgraph
isomorphism and isomorphism.

4.5. ENCODING FOR SMT-SOLVER 71

Lemma 32. Checking vkn is subgraph isomorphism-hard.

Proof. We show that subgraph isomorphism is Karp-reducible to checking vkn. This proof
is inspired by the one in [KM08]. Let Gi = (Vi, Ei) be two graphs for i ∈ {1, 2}. We
give a method R(-) that constructs a pure π-calculus-term, given a graph. To this end,
we introduce a name restriction vj for every node and a process call definition Q1[vj].
For every edge (vj , vk), we introduce Q2[vj , vk]. Note that for every two vertices that are
connected, we will introduce two process calls Q2[-] due to the way we defined that a graph
is undirected. Let V1 = {v1,1, · · · , v1,n} and V2 = {v2,1, · · · , v2,m}. Formally, R((V,E))
with V = {v1, · · · , vn} is defined as follows:

R((V,E)) = νv1, · · · vn.(
∏
v∈V Q1[v] ‖

∏
(vj ,vk)∈EQ2[vj , vk])

It remains to show that G1 is isomorphic to a subgraph of G2 if and only ifR(G1) vkn R(G2):

P1 := νv1,1, · · · , v1,n.(
∏
v∈V1

Q1[v] ‖
∏

(vj ,vk)∈E1
Q2[vj , vk])

vkn

P2 := νv2,1, · · · , v2,m.(
∏
v∈V2

Q1[v] ‖
∏

(vj ,vk)∈E2
Q2[vj , vk]).

(⇒) If G1 is isomorphic to a subgraph of G2, there is a function f : V1 → V2 such that
(u, v) ∈ E1 implies (f(u), f(v)) ∈ E2 which we denote by (∗) by definition. Hence, we
can rename the image of f(V1) in P2. All process calls of shape Q1[-] will be covered
as V1 is a set of names. By (∗), all process calls of shape Q2[-, -] will also be covered
and the (knowledge) embedding holds: P1 vkn P2.

(⇐) Given that P1 vkn P2, we know that there is a renaming for P2 such that

P2 ≡ νv1,1, · · · , v1,n, w1, · · ·wm−n.(
∏
v∈V1

Q1[v] ‖
∏

(vj ,vk)∈E1
Q2[vj , vk] ‖ Q)

for some remainder of process calls Q. This renaming induces an surjective function
f : V ′2 → V1 where V ′2 ⊆ V2. Let us consider the inverse function f−1 : V1 → V2. First,
it is injective. Second, for every edge (u, v) ∈ E1, we know that (f−1(u), f−1(v)) ∈ E2

which is the condition to be isomorphic to a subgraph of G2. Hence, the claim follows.

Lemma 33. Provided that Γ1 ≤kn Γ2 can be decided in polynomial time for arbitrary
Γ1,Γ2, checking vkn is NP-complete.

Proof. In Lemma 32, we have proven hardness for subgraph isomorphism. It is well-known
that subgraph isomorphism is NP-complete in general [Weg05]. There are subclasses for
which the problem is solvable in polynomial time but by the way we designed the translation,
the pure π-calculus terms can model any graph. Hence, checking vkn is NP-complete. It
remains to provide a non-deterministic polynomial algorithm to check ν~x1.(Γ1 ‖ Q1) vkn

ν~x2.(Γ2 ‖ Q2). To this end, let us non-deterministically guess a renaming from ~x1 to ~x2.
It is straightforward how to check Q′1 vkn Q2 for the renamed set of process calls Q′1. By
assumption, we can check whether Γ1 ≤kn Γ2 holds in polynomial time.

Corollary 8. Checking P1 vkn P2 for the intruder model for symmetric encryption Isy is
NP-complete.

Proof. The proof follows from Lemmas 29 and 33.

72 CHAPTER 4. ALGORITHMIC ASPECTS

Remark 7. Note that we encoded the subgraph isomorphism problem and not the induced
subgraph isomorphism problem. For the latter, the set of edges between the vertices need
to coincide and the problem can be solved in polynomial time for certain classes of graphs.
However, the same as before applies: the transformation can handle very general graphs.

Which Solver Recall that our inclusion check is recursive and we will not only deal with
one single check but several checks when checking inclusion. Additionally, knowledge is
crucial for our setting and is important for an embedding to either hold or not. Therefore,
we want the backend solver also to take care of knowledge. Hence, we refrain from employing
a solver for induced subgraph isomorphisms but use an SMT solver. We will present how to
encode constraints for renamings, process call and knowledge in an SMT instance.

4.5.2 Names

Conditions for a valid renaming:

• We define two sets for ~x1 and ~x2: X1 and X2.

• We are looking for an injective function f : X1 → X2 matching the names.

• We require equality for global names.

4.5.3 Process Calls

Naive Approach For every definition Q, we use one function for the left and one for the
right hand side which is constructed in the same way:

lQ : Xar(Q) → N and rQ : Xar(Q) → N.

These functions indicate how often the process call with the given parameters are present
on the left, respectively the right. For soundness, we could require that for every process
definition Q:

∀a1, a2, · · · , aar(Q) ∈ X1 : lQ(a1, · · · , aar(Q)) ≤ rQ(fa1, · · · , faar(Q))

Even though this concept is sound, the number of constraints to add is unreasonably high.

Covering (Single) Process Calls We introduce one boolean for every pair of process
calls with the same identifier which indicates whether this process call on the left is covered
by the one on the right. In case it is used, this entails a specific part of the renaming.
Technically, we introduce a boolean B1,2 for every two process calls (l, ~p1) ∈ Q1 and (l, ~p2) ∈
Q2 with the same label l and list of parameters ~p1 and ~p2 and require B1,2 =⇒ f~p1 = ~p2.
Obviously, we add a constraint that every process call on the right is used at most once to
cover one on the left. There are two ways to do this. First, we simply remember for every
process call every boolean which indicates that it is used to cover and allow at most one
to be true. Second, we could try to exploit how SMT solvers propagate information. To
this end, the use of implications might be advantageous so that we know that choosing one
boolean to be true entails others to be false. As before, we have to remember every boolean
indicating that a process call is used. Let B be the set of these booleans and b be the new
variable to be introduced. We add the following constraint for every b′ ∈ B: b =⇒ ¬b′.
Doing this in every step ensures that at most one boolean of the final set B can be set to

4.5. ENCODING FOR SMT-SOLVER 73

true. To prove this, we consider some boolean b which was added to B1 and is chosen to
be true. We split the final set B in the following way: B = B1] {b}] B2. Due to the
constraints added for B1, every b1 ∈ B1 is set to false. We know that for every b2 ∈ B2,
b2 =⇒ ¬b was added to the constraints. In case b2 was true, b would have to be false which
contradicts the assumption.

4.5.4 Knowledge

Besides names and process calls, we also have to generate an encoding for knowledge which
encodes the relation � we introduced in Section 4.2. We introduce a function

G : X1 ∪X2 → B

which indicates whether the ground message only containing the name is in the knowledge
basis. The encoding for encrypted messages we do not know the key for generates multiple
constraints. Intuitively, given an encrypted message on the left, we give all the options on
the right with the same form, which is a disjunction of conjunctions. We also give the option
to decompose and proceed recursively for the message and the key. In case of a pair, we
immediately split as there is no message with this top level constructor.

Definition 48 (Format of a Message). Let M be a message. We define the format of M
to be the syntax tree of constructors (-, -) and e(-)- needed to build a message from basic
names.

Note that two messages of the same shape have the same format. Therefore, having the
same format is a reflexive, transitive and symmetric order. Let us explain our approach for
knowledge with an example prior to formalising it.

Example 25. Let us consider e(a, b)e(c)d .
There are two options how this message can be derivable on the right: First, there is a
message with exactly the same format, e.g. e(x, y)e(z)w . Then, we require every single name
to match:

a = x ∧ b = y ∧ c = z ∧ d = w.

Second, both components (a, b) and e(c)d could be derivable independently.
For (a, b), we split again and observe that both are basic names so that we require that

G(fa) ∧G(fb).

In case that these were no basic names, we would proceed recursively.
For e(c)d, we can again have a message with the same format e(j1)k1 and another one e(j2)k2
for which we introduce the following constraints:

(c = j1 ∧ d = k1) ∨ (c = j2 ∧ d = k2)

as satisfying one constraint would be enough. As before, we can also split the message into
its components and just require that

G(fc) ∧G(fd).

We combine all these constraints and hence formalise the intuition:

a = x ∧ b = y ∧ c = z ∧ d = w
∨ ((G(fa) ∧G(fb)) ∧ ((c = j1 ∧ d = k1) ∨ (c = j2 ∧ d = k2) ∨G(fc) ∧G(fd))).

Guided by this example we construct a tree of constraints from which we derive one con-
straint by combining them in the right way which is illustrated in Fig. 4.1.

74 CHAPTER 4. ALGORITHMIC ASPECTS

e(a, b)e(c)d

split

(a, b)

split

G(fa) G(fb)

combo

false

∅

e(c)d

split

G(fc) G(fd)

combo

c = j1
∧

d = k1

e(j1)k1

c = j2
∧

d = k2

e(j2)k2

combo

a = x ∧ b = y ∧ c = z ∧ d = w

e(x, y)e(z)w∧

∨

∧

∨

∧ ∨

Figure 4.1: Tree of constraints for e(a, b)e(c)d

Let us just recall the setting briefly: We want to check whether Γ1 ≤kn Γ2 for two
irreducible knowledge bases. As described in Algorithm 1, we consider every message M
from Γ1 and check whether we can compose it from Γ2. For basic names, this is simple so we
consider encrypted messages (and pairs as they might appear below encryptions). Therefore,
the following algorithm can be generalised to intruder models satisfying the assumptions for
Algorithm 1.

Algorithm 8 (Knowledge Constraints). Let M ∈ Γ1 be an encrypted message. We label
the root of our tree with M and add two children with labels combo and split. These
labels indicate what we do with M in the parent node and both subtrees are combined as a
disjunction.

combo We take every message M ′ with the same format from Γ2. There might be several M ′

which is why we add another level of children labelled by M ′. As every single option
is sufficient, we combine these to a disjunction.
For every M ′, we add a constraint that the names in the same positions of M and M ′

correspond to each other.

split Here, we consider both encrypted messages e(N1)N2
and pairs (N1, N2). First, we

check the kind of message of Ni. In case of a basic message, we simply require G(fNi)
to hold. In case of a pair or encryption, we add N1 and N2 as children and proceed
recursively by building the tree of constraints for both of them.

In the actual encoding, we add a boolean variable for every node and add the corresponding
constraints in case this option is chosen.

When investigating pairs in this algorithm, it is interesting to see that we consider them
in combo for a concise presentation even though we know that there cannot be any message

4.6. TIGHT FORM 75

with the same format. This is due to the fact that (-, -) cannot appear as a top level
constructor by Lemma 26.

Preprocessing Checks There are some straightforward sufficient checks that can be
employed to obtain a negative result faster, i.e. facts that have to hold for P1 vkn P2:

• global names have to coincide.

• the number of name restrictions in P1 needs to be smaller than the one in P2.

• for every process call label in P1, there have to be at least as many process calls with
the same label.

Checking Congruences By checking vkn twice, we can also check ≡kn easily. Obviously,
we merely have to do the checks if the number of fresh names and the number of process
calls with the same label coincide. In order to check ≡, we can have simpler constraints for
knowledge that are analogous to the ones for process calls. Instead of checking for the same
label, we check for the same format of both messages and require the renaming to match on
the different positions of the message. As knowledge is persistent, there is no need to ensure
that every message is only used once on the right. If there are no duplicates of messages in
both knowledge bases, this will be the case anyway.

Potential Improvement The recursion of the inclusion check can lead to backtracking.
Since we will deal with extensions of limits, there will be several “corresponding” solutions
for mappings of names. Such mappings should not be considered again if the succeeding
checks failed. There might be potential for improvement by ruling out corresponding name
mappings via predicates, which is left for future work.

4.6 Tight Form

In contrast to the previous sections, we assume a general intruder model for this section.
In Section 3.4, we have defined structural congruence for limits and explained that the
presented rules enable us to swap names over ω’s. The following two examples show two
ways to amend limits and preserve their semantics.

Example 26. Consider the limit L = νx.(νy.(νz.Q[x, y] ‖ Q[y, z])ω)ω While it is obvious
that Q[y, z] refers to the last name that was bound, i.e. z, there is no need for Q[x, y] to be
in the same scope:

JLK = νx.(νy.(Q[x, y]ω ‖ (νz.Q[y, z])ω)ω

Let us recall the procedure for checking inclusion of two limits is recursive: to check
whether JL1K ⊆ JL2K holds, we unwrap one level of ω’s in L1 in every step of the recursion.
It is straightforward to see that we hence want to minimise the ω-height overall.

Example 27. Consider the limit L = νx, y.(Q[x] ‖ Q[y])ω. It holds that

JLK = Jνx.(Q[x])ω ‖ νy.(Q[y])ωK.

So splitting and applying scope extrusion does not alter the semantics of the limit in this
case. We can still amend the limit and observe that

Jνx.(Q[x])ω ‖ νy.(Q[y])ωK = Jνx.(Q[x])ωK.

76 CHAPTER 4. ALGORITHMIC ASPECTS

As shown in the previous example, it can also be advantageous to split components to
observe possible (inter-)dependencies. Thereby, the observation need not be that both limits
are structurally congruent but rather whether one is included in another.

Overall, the intuition for the relation we want to establish follows these principles:

• every ω in L should contribute to the semantics of the limit, i.e. the limit has minimal
ω-height for its semantics

@L′ with ω-height(L′) < ω-height(L) : JL′K = JLK

• components should be “under” as few ω’s as possible, i.e. the number of ω’s on the
path to components should be minimal

• the number of ω’s in every level should be as high as possible while keeping the vector
notation for name restrictions, i.e. let L = ν~x.(〈Γ′〉 ‖ Q′ ‖ R′) be a some limit in some
level, then

@L′ = ν~x.(〈Γ′〉 ‖ Q′ ‖ R′) with |R′| > |R| and JLK = JL′K

Height vs. Width Inspired by the third principle, let us define ω-width which intuitively
refers to the number of ω in parallel and can be thought of being orthogonal to height.

Definition 49 (ω-width). Given a limit sf(L) := ν~x.(〈Γ〉 ‖ Q ‖ R). We define width of a
limit in standard form only on the top level: width(L) := |R|.

Remark 8 (Only Guidelines, No Normal Form). Note that we cannot require all principles
to hold pedantically. For instance, we can inflate the width in the third principle by adding
the same sublimit arbitrarily. Overall, this means that we will not have a unique normal
form for every limit with the same semantics but restrict it to the succeeding congruence
relation.

Guided by the two examples and these principles, we define the following congruence
relation for limits. The main goal is to have a coarser relation than structural congruence
that preserves the semantics of limits.

Definition 50 (Limit Congruence). Limit congruence ≡L is the smallest relation subsuming
structural congruence ≡ and satisfying the following rules:

(ν~x.ν~y.(P ‖ Q))ω ≡L (ν~x.P)ω ‖ (ν~y.Q)ω if ~x ∩ fn(Q) = ∅ ∧ ~y ∩ fn(P) = ∅ (4.1)

(ν~x.(P ‖ (ν~y.Q))ω)ω ≡L (ν~x.P)ω ‖ (ν~y.Q)ω if ~x ∩ fn(Q) = ∅ (4.2)

Note that allowing ~x or ~y to be empty, (4.1) generalizes usual scope extrusion consider-
ing ω as context. (4.2) will not be applicable for limits in standard form as ~x is not used in
its scope of restriction.

Lemma 34 (Correctness of ≡L). Let L1, L2 be two limits that are limit congruent to each
other: L1 ≡L L2. Then, JL1K = JL2K.

Proof. Let us sketch the proof. First, we know that structural congruence does not alter the
semantics of a limit and hence it suffices to prove that a single application of each of both
rules does not change the semantics of the limit. To this end, we consider expanded limits

4.6. TIGHT FORM 77

by Lemma 9 and vkn-downward-closure. Let n ∈ N be some number. For Eq. (4.1), we can
simply apply scope extrusion multiple times and obtain the same process on both sides. For
Eq. (4.2), we observe that expanding with n on the left leads to process that is embedded
by expanding the right hand side with n ∗ n.

We will present a function called tigh(-) computing a limit “satisfying” the presented
guidelines. Equipped with this notation, we can introduce a preprocessing check for inclusion
checks by exploiting the first principle.

Lemma 35. [Soundness of Preprocessing Check] For all limits L1, L2 ∈ L s.t. JL1K ⊆ JL2K,
ω-height(tigh(L1)) ≤ ω-height(tigh(L2)).

We will prove this lemma at the end of this section. Let us formalise the principles we
want to be guided by.

Restricted Form Let us recall an amended version of restricted forms for processes in-
troduced in [Mey09]. However, we will see that these are too restrictive for our purposes.

Definition 51 (Fragments and Restricted Form from [Mey09]). Fragments, typically de-
noted by F or Fi, are defined inductively by

F ::= Q[~a] | νa.
∏
i∈IFi

where a ∈ fn(Fi) for all i ∈ I. The set of all fragments is PF . A process P rf =
∏
i∈IFi is in

restricted form. The set of all processes in restricted form is Prf with PF ⊆ Prf .

Note that we can omit the option of non-empty choices as choices are guarded in the
calculus.

Example 28. Consider the following process with three name restrictions:

νx, y, z.(Q[x, y] ‖ Q[y, z] ‖ Q[x, z])

We can transform this into

νx.(νy.Q[x, y] ‖ (νz.Q[y, z] ‖ Q[x, z]))

but also every permutation of renamings of x, y and z. Note that this entails that restricted
forms may not be unique.

Conglomerate of Name Restrictions As stated in the third principle, we want to keep
the vector for name restrictions in general. Remember that we want to introduce a new
(standard) form for limits for the application of the recursive inclusion check. In Section 4.5,
we have explained how condition (A) can be encoded as an SMT instance. Hence, the solver
will take care of the combinatorial problem of assigning name restrictions from left to right.
The encoding only has a solution if a “partial” knowledge embedding exists, i.e. one that
satisfies (A). Therefore, it is reasonable to encode as many constraints as possible in one
SMT instance in order not to backtrack more often than necessary. Overall, we want to
keep the standard normal form for limits induced by structural congruence and only amend
sublimits by limit congruence when considering ω.

To this end, we define a tight form for limits that is inspired by [Mey09] and the tied-to
relation from [D’O15] that we lift to limits.

78 CHAPTER 4. ALGORITHMIC ASPECTS

Definition 52 (tied-to (adapted from [D’O15])). We might want to define it on processes
instead of indices for our purposes.
Let

∏
l∈LAl be all parallel components in standard form so that

ν~x.(〈Γ〉 ‖
∏
j∈JsQj [~xj] ‖

∏
j∈JωR

ω
j) = ν~x.

∏
l∈LAl

where L = Js] Jω which means that we are considering single parallel components with
Al. Al and Am are linked if fn(Al) ∩ fn(Am) ∩ ~x 6= ∅ which is denoted by l ↔L m. The
tied-to relation is the transitive closure of ↔L: l aL m, if ∃n ∈ L s.t. l ↔L l ∧ n aL m.
We define an analogous connection for names in the sense that a name y is tied to Al in L
if ∃m ∈ L.y ∈ fn(Am) ∧m aL l, written y /L l and do not require y ∈ ~x.

The goal of the tight form is to have a very similar shape as the standard form induced
by structural congruence while exploiting limit congruence for some semantic observations.

Definition 53 (Tight Form). A limit L with standard form sf(L) := ν~x.(〈Γ〉 ‖ Q ‖ R) is
called tight iff ∀Q ∈ Q,∀y ∈ ~x, y /L Q and ∀Rj ∈ R,∀y ∈ ~x, y /L Rj and Rj is in tight form.

4.6.1 Algorithm for Tight Form

Intuition: traverse the tree bottom-up and lift (bundles of) limits that do not use any name
from the level above.

Definition 54 (Bundle). Every unsplittable limit L, i.e. there are no S1, S2 s.t. L ≡L (S1 ‖
S2), is called a bundle.

At first, we describe how to compute bundles of a limit, i.e. splitting it as far as possible
so that it becomes a parallel composition of bundles.

Algorithm 9 (Computing Bundles). Given a limit L = (ν~x.(
∏
j∈JAj))

ω in standard form.
We call names in ~x recently bound from the perspective of the components Aj .

Compute the subset of recently bound names used by every component Aj : Nj ⊆ ~x.

Let us consider ~x as a set of nodes in an undirected graph. There is an edge between y
and z iff there is a j s.t. y ∈ Nj and z ∈ Nj . By definition, every name in ~x is used at
least once in its scope of restriction which is why we cannot have isolated node. But
there might be process calls that do not use any name in ~x.

Then, every connected component of the graph and its associated components are one
bundle: P := (ν~xP .

∏
j∈JPAj). In case of isolated nodes, ~xP is empty and |JP | = 1.

For a limit L, we denote the set of bundles by BL. Every single limit in BL is assumed
to be in standard form. Recombining all bundles carefully leads to a limit which is limit
congruent to L. To this end, let us define a function that reflects the intuition that no
component can be decorated with two ω’s. If no new names are bound, then the term is
only decorated with an ω if it is no message and not already iterated.

w(P) :=

{
Pω if |~xP | > 0 ∨ |JP | = 1 ∧AJP is no message ∧AJP 6= Cω for some C

P otherwise

We combine the bundles using this function and obtain:

L ≡L
∏
P∈BL

w(P)

4.6. TIGHT FORM 79

where several applications of Rule (4.1) imply the congruence.

Lemma 36. For every bundle B = ν~x.
∏
l∈LAl, every name is tied to every component.

Proof. Towards a contradiction, assume that there is a name x ∈ ~x that is not tied to some
component Al. This means ∀j ∈ L s.t. x ∈ fn(Aj), Al 6aB Aj . This segregation entails at
least two parts of ~x for which we could use Rule (4.1) to split the bundle. By definition,
a bundle cannot be split which leads to a contradiction so the claim follows. Note that
this contradiction corresponds to mixing up two (or more) connected components in the
presented algorithm.

Algorithm 10 (tigh(-)). This algorithm takes a limit L and transforms it into a parallel
composition of limits in tight form. One can think of L as a syntax tree where vectors of
names, messages and (iterated) process calls are nodes. Vectors of names should be the only
kind of nodes to have children. We traverse the tree in depth-first search and apply the
following steps after we visited every child of a node. From now on, we will refer to a node
as the subtree rooting in it and the limit it denotes interchangeably.

1. For leafs, do not do anything.

2. For inner nodes, consider each one as a limit L and compute all bundles: BL and put∏
P∈BL

w(P) in the place of the original limit.

3. Now, we check which bundles have to be lifted. For every bundle, intersect all free
names with all recently bound names (if existent).
If non-empty, keep the bundle as limit on this level.
If empty, lift the whole subtree one level up and put it in parallel with the other limits
at this level. This transformation is sound due to (4.2) as no recently bound names as
well as names from parallel sublimits are used.

By its recursive nature implemented as a depth-first search, one single application of tigh(-)
suffices. Note that we chose to leave the bundles as computed and thereby amount to the
third principle to increase width.

Corollary 9. Let L be a limit. Then, Jtigh(L)K = JLK.

Proof. By construction of the algorithm, tigh(L) ≡L L and by Lemma 34, the claim follows.

Example 29. νx.(νy.(νz.Q[x, z] ‖ Q[y, z])ω)ω is a limit in tight form.

4.6.2 The Original Goal

Note that we wanted to decrease the computational workload for the recursive calls when
checking inclusion for two limits. Moreover, we aimed at a quick preprocessing check whether
two limits can even be included. Recall that we still need to prove that for all limits
L1, L2 ∈ L s.t. JL1K ⊆ JL2K, ω-height(tigh(L1)) ≤ ω-height(tigh(L2)).

Definition 55. Let L and L′ be two limits. We say that L′ is embodied in L if there is a
n-ary multi-hole context C[•, · · · , •] such that

C[L1, · · · , Ln] = L and C[+, · · · ,+] = L′

where inputting + in a context means omitting this hole completely and necessarily omitting
parallel operators and respective name restrictions when becoming superfluous.

80 CHAPTER 4. ALGORITHMIC ASPECTS

Computing a Witness of Height We can compute a witness of height, an embodied
limit of every limit in tight form. The witness has the same height but only contains
parts that contribute to the height either by being part of the longest path in the tree or
contributing to the dependencies. There might be several occurrences of ω in the same level
as the tied-to relation may need other sublimits to link.

Algorithm 11 (Witness of Height). This algorithm takes a limit L in tight form with
height h and returns an embodied limit L′ of the same height. It is a recursive procedure.

For every level, only keep the bundle with maximal height and all (non-iterated) compo-
nents that are tied to that bundle as well as only names that are tied to the bundle. Recurse
and do the same for this bundle.

L′ is not necessarily unique but gives a sequence of name restrictions ~~x = ~x1, · · · , ~xh for
the longest path in the syntax tree. For every level i, we know that some x ∈ ~xi is used in the
sublimit on the longest path. By its occurrence, we know that we can have an unbounded
number of components using x and fresh names ~xi+1. Considering the next level, there is
one name from ~xi+1 and so on. We define this component to be C(x, x′) for every x′ ∈ ~xi+1.

Equipped with this algorithm, we conclude with the remaining proof of Lemma 35.

Lemma 35. [Soundness of Preprocessing Check] For all limits L1, L2 ∈ L s.t. JL1K ⊆ JL2K,
ω-height(tigh(L1)) ≤ ω-height(tigh(L2)).

Proof of Lemma 35. Let Lti := tigh(Li) and hi := ω-height(Lti) for both limits. Given that
JLt1K ⊆ JLt2K, we want to show that h1 ≤ h2. We proceed by contraposition. We assume
that h1 > h2 and show that the inclusion breaks. By the above procedure, we can compute
the witness W1 of height h1 whose semantics are included in the the semantics of L1. By
its structure, W1 provides us with vector of vector of names ~~x = ~x1, · · · , ~xh1

for the longest
path of the limit considered as syntax tree. On every level i, there is at least one x ∈ ~xi that
is used in the sublimit on the longest path due to the tight form. Thereby, we know that we
can have an unbounded number of components using xi and fresh names ~xi+1. Considering
the next level, there is one name xi+1 from ~xi+1 and so on. We define this component to be
C(xi, xi+1) for every i.
Starting from the other side, we use Lemma 14 and have to prove that ∃n, ∀m, dLt1en 6vkn

dLt2em. The idea for the contradiction is to pump the left side up with some number n so that
it is impossible to find an m for the knowledge embedding. Let n be the sum of all parallel
components on all levels of Lt2. This ensures that instances produced from an enclosed limit
of Lt1 cannot be fully covered by fixed parts of Lt2. From before, we have a sequence of
names x1, · · · , xh1

such that for every i ∈ [1, h1), we can have n times C(xi, xi+1) with fresh
names xi+1. Let m be any number with which we expand the right limit while we expand
the left one by n. Now, we try to find an embedding. Because of the size of n, we always
have to match a former sublimit to a former sublimit as the fixed part can never cover all
the new fresh names. We do not necessarily have to choose the highest level possible for the
matching but it definitely has to be a lower one than before. Hence, the highest would be
the best case. Nevertheless, we will have to map at least two former sublimit-levels to the
same one on the right as h1 > h2. Without loss of generality, let i and i+ 1 be these levels.
Then, n times C(xi, xi+1) and n ∗ n times C(xi+1, xi+2) ought to be covered on the same
level for the appropriate fresh names. No expansion of Lt2 can introduce so many new names
as every new sublimit can only introduce one layer of new names but we would require to
get even new ones for the recently produced ones xi+1. It is worth noting that only the
tight standard form enables us to obtain this vector of names and the components C(-, -) or
rather enables us not to get them in L2. Hence, there is no such m and the inclusion breaks
which is a contradiction.

Chapter 5

Evaluation

In this chapter, we present the evaluation of our approach of inductive invariants for crypto-
graphic protocols. We built a proof-of-concept prototype tool that implements the approach
for the intruder model for symmetric encryption Isy. As most algorithmic aspects have been
discussed in Chapter 4, we only briefly discuss the setup. We present a benchmark suite con-
sisting of variants of well-known protocols and the corresponding empirical measurements
obtained by using our prototype implementation.

5.1 Benchmarks

The prototype comprises means to parse limits for which we can check inclusion as well as
inductivity. For the latter, we exploit the incorporation check explained in Section 4.1. It
is also possible to generate invariants starting from a non-inductive limit using the coarse
widening from Section 4.4.

The tool currently only supports symmetric encryption but there are plans to extend
the tool to support asymmetric encryption, signatures and hashing. Based on the ob-
servations for the generic use of the algorithms in Chapter 4, this should be feasible.
The sourcecode and the benchmark suite with its protocol models can be accessed at
https://bitbucket.org/bordaigorl/lemma9. The name “Lemma 9” used to be an in-
ternal name for a cornerstone component of this verification approach. Eventually, it
became the “Absorption Axiom”. Let us recall the benchmarks from [DS19]. We ap-
plied the approach to variants of well-known protocols: Needham-Schröder(-Lowe) (NHS,
NHSL), Yahalom (YAH), Andrew’s RPC (ARPC), Otway-Rees (OR), Kehne-Schönwälder-
Landendörfer (KSL, KSLR with reauthentification). The results are summarised in Ta-
ble 5.1. For every variant of the protocols, we tried to infer an inductive invariant by coarse
widening. This worked for all examples except Needham-Schroeder-Lowe. There, we needed
to interactively combine two different invariants. The result was then inductive. For this
example, the time reflects solely the sum of the two generations. The second time reflects
how long it takes if an inductive invariant is given as correctness certificate and inductiv-
ity is re-checked. In general, it is fair to state that the results look promising so that an
application to real-world protocols does not seem unrealistic.

81

https://bitbucket.org/bordaigorl/lemma9

82 CHAPTER 5. EVALUATION

Table 5.1: Experimental results. Columns: Inference of invariant fully automatic (f) or in-
teractive (i); Check of inductiveness; Secrecy proved (X), not holding (×), not modelled (◦).

Name Infer C S Name Infer C S Name Infer C S
Ex.2 2.6s f 1.0s X ARPC 0.4s f 0.1s X NHS 8.5s f 1.7s ◦
OR 4.0s f 2.1s ◦ YAH 8.6s f 2.8s ◦ NHSL 2.4s i 16.1s X
ORl 37.5s f 3.9s × YAHsI 13.4s f 2.8s X KSL 45.0s f 11.2s X
ORs 15.0s f 2.3s X YAHsII 9.7s f 2.2s X KSLR 175.1s f 36.2s X

5.2 Otway-Rees Protocol

In Section 4.4, we already discussed the Yahalom protocol which is why we only discuss one
interesting example here: the Otway-Rees protocol. It exemplifies that the size function for
variables in patterns is important for soundness. Recall the description of the protocol as
given in [DOT17].

(1) A→ B : M,A,B, e(NA,M,A,B)KAS

(2) B → S : M,A,B, e(NA,M,A,B)KAS
, e(NA,M,A,B)KBS

(3) S → B : M, e(NA,KAB)KAS
, e(NB ,KAB)KBS

(4) B → A : M, e(NA,KAB)KAS

Without Classification To start with, we consider the protocol without labels for secrets.
The protocol can be encoded with the initial configuration:

νa, b, kas, kbs.(S1[a, b, kas, kbs] ‖ A1[a, b, kas] ‖ B1[a, b, kbs])

using the following definitions:

S1[x, y, kxs, kys] := in(nx, ny,m : (m,x, y, e(nx,m, x, y)kxs
, e(ny,m, x, y)kys

)).
(νkxy.(〈e(nx, kxy)kxs

〉 ‖ 〈e(ny, kxy)kys
〉 ‖ S1[x, y, kxs, kys]))

A1[x, y, kxs] := τ.(νm.(〈(m,x, y)〉 ‖ A1[x, y, kxs] ‖ A′1[x, y,m, kxs]))
A′1[x, y,m, kxs] := τ.(νnx.(〈e(nx,m, x, y)kxs

〉 ‖ A2[m,nx, kxs]))
B1[x, y, kys] := in(((m : size 1) : (m,x, y)).

(νny.(〈x〉 ‖ 〈y〉 ‖ 〈e(ny,m, x, y)kys〉 ‖ B1[x, y, kys] ‖ B2[ny, kys]))
A2[m,nx, kxs] := in(kxy : (m, e(nx, kxy)kxs

)).0
B2[ny, kys] := in(y, kxy,m : (m, y, e(ny, kxy)kys

)).0

Note the use of a helper definition A′1[-] for A1[-] which is needed for the generation of
an inductive invariant. This restriction is used to guide the generation. It is straightforward
to automatically linearise multiple name restrictions and restore the original process call
definitions. Since this kind of coarse widening is an intermediate step towards more sophis-
ticated techniques, it is more convenient to have the possibility to determine the linearisation
manually for now.

The result is the following:

(〈b〉 ‖ 〈a〉 ‖ S1[a, b, kas, kbs]
w ‖ B1[a, b, kbs]

w ‖ A1[a, b, kas]
w ‖ Lw1)

L4 = νkxy.(〈e(ny, kxy)kbs〉 ‖ 〈e(nx, kxy)kas
〉)

L3 = νnx.(〈e(nx,m, a, b)kas
〉 ‖ A2[m,nx, kas] ‖ Lw4)

L2 = νny.(〈e(ny, b, a, b)kbs〉 ‖ 〈e(ny,m, a, b)kbs〉 ‖ 〈e(ny, a, a, b)kbs〉 ‖ B2[ny, kbs] ‖ Lw3)
L1 = νm.(〈m〉 ‖ A′1[a, b,m, kas] ‖ Lw2)

The inductivity of this invariant proves that the protocol is depth-bounded.

5.2. OTWAY-REES PROTOCOL 83

Classifying Secrets It is obvious that we want to classify the session key KAB as secret.
We do so by amending the definition of B2[-] to have the continuation Secret[kxy].

Now, it is interesting to investigate the result of the invariant generation:

(〈b〉 ‖ 〈a〉 ‖ S1[a, b, kas, kbs]
w ‖ B1[a, b, kbs]

w ‖ A1[a, b, kas]
w ‖ Lw1)

S6 = (Leak[(a, a, b)] ‖ Leak[(m, a, b)] ‖ Leak[(b, a, b)])
S5 = (Secret[(a, a, b)] ‖ Secret[(m, a, b)] ‖ Secret[(b, a, b)] ‖ S6 ‖ Secret[kxy]w)
L4 = νkxy.(〈e(ny, kxy)kbs〉 ‖ 〈e(nx, kxy)kas〉 ‖ S5)
L3 = νnx.(〈e(nx,m, a, b)kas

〉 ‖ A2[m,nx, kas] ‖ Lw4)
L2 = νny.(〈e(ny, b, a, b)kbs〉 ‖ 〈e(ny,m, a, b)kbs〉 ‖ 〈e(ny, a, a, b)kbs〉 ‖ B2[ny, kbs] ‖ Lw3)
L1 = νm.(〈m〉 ‖ A′1[a, b,m, kas] ‖ Lw2)

Even though the session key KAB was not leaked, there are several occurrences of Leak[-]
in the invariant. Since we only declare a message to be a secret if B thinks it is the session
key, B considers a triple to a the key in some cases. This is undesired and stems from a
type of attack which is called type confusion. We can bypass this by restricting B only to
accept messages of size 1 for keys by amending the following definition:

B2[ny, kys] = in((kxy : size 1) : e(ny, kxy)kys
).(Secret[kxy])

With this restriction, the following invariant is generated. It proves that the protocol does
not leak a session key.

(〈b〉 ‖ 〈a〉 ‖ S1[a, b, kas, kbs]
w ‖ B1[a, b, kbs]

w ‖ A1[a, b, kas]
w ‖ Lw1)

L4 = νkxy.(〈e(ny, kxy)kbs〉 ‖ 〈e(nx, kxy)kas
〉 ‖ Secret[kxy]w)

L3 = νnx.(〈e(nx,m, a, b)kas〉 ‖ A2[m,nx, kas] ‖ Lw4)
L2 = νny.(〈e(ny, b, a, b)kbs〉 ‖ 〈e(ny,m, a, b)kbs〉 ‖ 〈e(ny, a, a, b)kbs〉 ‖ B2[ny, kbs] ‖ Lw3)
L1 = νm.(〈m〉 ‖ A′1[a, b,m, kas] ‖ Lw2)

Chapter 6

Related Work

In this chapter, we will discuss other automatic verification techniques for cryptographic
protocols that also employ the symbolic model. We start by highlighting the beginnings of
invariants as verification technique for cryptographic protocols as well as mention the use
of type system in this context. Moreover, we will explain how other approaches (tools) are
dealing with undecidability of the general problem.

6.1 Invariants

The use of invariants for verification of cryptographic protocols was pioneered by [Mcl95,
Pau98].

In [Mcl95], protocols are modelled as standard linear-time logic properties. The proper-
ties to prove are also given as linear-time logic formulas. It is a valid mean to strengthen
these formulas in a way that they become inductive. One can then manually prove that
they hold and hence the security property is guaranteed.

In the approach proposed in [Pau98], interactions in a protocol are modelled as events
in Isabelle/HOL. A run of a protocol is a trace of which infinitely many can exist. The
methodology to prove security properties is based on induction on traces. This works by
proving invariant properties of traces of the protocol manually but checked by the theorem
prover HOL.

In general, invariants often form the bases for all kind of properties to prove. First,
a number of “well-formedness” invariants are established. Then, one refines the set of
feasible traces by establishing more and more precise invariants. For instance, a message k
is never sent as plaintext can be such an invariant. More complex properties are then proven
by appealing to these invariants. Our work can help to automate the proofs of (secrecy)
invariants.

Let us now turn to the general question of how to deal with undecidability. As explained
in Section 2.3, verification problems for cryptographic protocols become easily undecidable
because of the Turing-completeness of the model. There are different approaches how to
deal with this:

• restricting the model in a way that it becomes decidable — at the expense of proving
a weaker claim

• having a semi-decision procedure that may not terminate for some instances

• over-approximating solutions which may cause false positives.

85

86 CHAPTER 6. RELATED WORK

For our use case, restricting the model often means bounding the number of sessions. Since
our approach focuses on unbounded number of sessions, we only briefly hint at tools pur-
suing this way. We will focus on the two major tools, i.e. ProVerif and Tamarin, that can
also handle an unbounded number of sessions. They employ semi-decision procedures and
over-approximations but there are some classes of protocols for which termination can be
guaranteed. We also sketch how we could incorporate our techniques into these tools to
extend the class of protocols they can handle or to speed up computation in general. Even
though our approach may use some over-approximations when generating the invariants, we
build a sound and complete theory supporting an unbounded number of sessions.

6.2 Bounded Number of Sessions

Bounding the number of sessions renders a lot of verification problems decidable, e.g. one
can check whether equivalence or trace properties hold for protocols that apply a range of
cryptographic primitives. Intuitively, equivalence properties determine whether two separate
executions of a protocol can be distinguished by the environment. For instance, it is crucial
for e-voting protocols that no one can distinguish whether two people have voted for the
same party. Trace properties do not compare two executions but only refer to one single
trace.

• The AVISPA tool [ABB+05] has been designed to scale up to large scale Internet
security protocols. Overall, the tool comprises several components and backend solvers.
It employs model checking techniques for protocol falsification, i.e. finding an attack
on the protocol. For the same purpose, they also apply constraint-solving to search for
attacks. One can also encode a bounded unrolling of a protocol and the violation of
a security property as SAT instance. The latter is given to a SAT solver and a model
is translated back into a concrete attack if one is found. For secrecy properties, the
intruder knowledge can be under- and over-approximated using a tree automata based
approach that exploits the connection to regular tree languages and rewriting.

• The DEEPSEC tool [CKR18] was the first tool to decide trace equivalence and la-
belled bisimilarity when intruder models are modelled as subterm convergent destruc-
tor rewrite systems (see Section 7.2). They achieve this by encodings into second-order
logic constraint systems and partitioning the solutions for these systems.

• The SPEC tool [TNH16] automatically checks equivalence properties for security pro-
tocols that are modelled in a variant of the π-calculus, which incorporates crypto-
graphic primitives. Their equivalence checks basically amount to checking open bisim-
ulation for two processes, i.e. checking whether the executions of two processes cannot
be distinguished in any context.

• The AKISS tool [CCCK16] is a verification tool for trace equivalence of the class of
so-called determinate protocols. As trace equivalence and observational equivalence
coincide for this class, it can also verify observational equivalence properties. Traces of
bounded number of sessions are modelled as first-order Horn clauses and equivalence
properties are then checked by resolution procedures.

This is a non-exhaustive list of tools for a bounded number of sessions. Despite of the
state space explosion problem that is inherent to model checking techniques, it is fair to state
that the application of model checking has been quite successful in the domain of automated

6.3. UNBOUNDED NUMBER OF SESSIONS 87

verification of cryptographic protocols. They also contribute efficient algorithms to handle
different cryptographic primitives which might be useful for the extension of our tool.

6.3 Unbounded Number of Sessions

In addition to allowing non-termination and over-approximations, there are two major ap-
proaches to handle an unbounded number of sessions from the user perspective:

• incomplete or non-terminating procedures,
e.g. ProVerif [Bla16], MAUDE-NPA [EMM06]

• relying on user interaction,
e.g. Tamarin [MSCB13] may need helper lemmas,

Cryptyc [GJ02] needs type information

These two classes are not distinct but they can overlap. Our goal is not to give a full
survey of cryptographic protocol verification but to present the ideas of two examples,
i.e. ProVerif [Bla16] and Tamarin [MSCB13], and to show how they differ from our results
and how our results could be integrated in their approaches. We will also briefly discuss
type systems in the context of verification of cryptographic protocols.

6.3.1 ProVerif

Similar to the class of depth-bounded protocols, the research for ProVerif was initially moti-
vated by proving secrecy [Bla01]. It evolved over the last decade to a mature tool supporting
a wide range of cryptographic primitives which are modelled by equations or rewrite rules.
The security properties that can be verified include secrecy, authentification and observa-
tional equivalence properties.

Approach Protocols are modelled in a variant of the π-calculus. They are automatically
translated to Horn clauses using some approximations to handle the infinite state space.
In particular, any clause can be used an arbitrary number of times so that the number of
replications is ignored. The properties to be proven are translated to derivability queries
for this set of Horn clauses. With a resolution method, one checks whether a query can be
derived. If not, the property holds. If it is derivable, there might be an attack. One attempts
to reconstruct it and if successful, one has a concrete attack and hence the property does
not hold. In case an attack cannot be reconstructed, the result is indistinct and one does
not know whether the property holds. The latter can be the consequence from abstracting
too rigorously, which results in over-approximations.

Termination The overall procedure may not terminate due to the resolution step involved
since the derivability problem is undecidable in general. In 2005, Blanchet and Podelski
have isolated a fragment of protocols for which they proved termination: the class of tagged
protocols with a restricted set of cryptographic primitives. Intuitively, a protocol is tagged
if every different application of a cryptographic operator is tagged with a distinct constant
(name). Therefore, tagging a protocol is trivial and honest runs can still happen in the same
way while attacks might not be possible anymore in the presence of tags. Generally speaking,
tagging is another option to prevent type confusion attacks which we have remedied with a
sizing function.

88 CHAPTER 6. RELATED WORK

It was shown in [DOT17] that the class of tagged and the class of depth-bounded protocols
are incomparable. Intuitively, this is easy to see: Example 2 is a depth-bounded protocol
without tags while it is straightforward to construct infinite encryption chains in the presence
of tags. Hence, it would be interesting to understand whether the class of depth-bounded
protocols also entails guaranteed termination in ProVerif.

6.3.2 Tamarin

The Tamarin tool [MSCB13] is one of the few tools that was designed to support Diffie-
Hellman exponentiation for an unbounded number of sessions by default [SMCB12]. It also
supports cryptographic primitives modelled by subterm convergent equational theories as
well as associative and commutative operators.

Approach Protocols are modelled as multiset rewriting systems while the properties of
interest had been trace properties modelled by temporal first-order logic in the beginning.
Later on, the tool was extended to handle equivalence properties inspired by the ideas used
in ProVerif. The multiset rewriting system is translated into a labelled transition system.
Then, invalidating a trace property amounts to finding a witness for the negation of the
temporal first-order logic formula obtained from the trace property to prove. Hence, a trace
property can be validated if no witness is found. For this process, user interaction might be
required in form of helper lemmas. These involve the security properties to prove but may
often involve loop invariants for protocols with loops — as done in program verification.
Their constraint-solving techniques then prove the latter and exploits them for the actual
security properties. They employ backward-search techniques and in order to make them
work, the backward search may not terminate for two reasons [SMCB12]. First, because
of loops as infinite application of these kind of rules might be applicable, in particular if
the given loop invariant is too weak. Second, if the protocol serves as a so-called generic
message deduction oracle, the normal form conditions may not achieve to eliminate enough
redundant steps.

Pruning State Space [MSCB13] states that formulas can be used to restrict executions
in specific ways. This is where our theory of invariants may be useful to prune the state
space. Invariants over-approximate the reachable state space and hence restricting execu-
tions/checks only to these states is still sound. Even though there is a translator from an
extension of the applied π-calculus to the input set for Tamarin [KK14], this incorporation
is far from trivial and is hence left for future work.

6.3.3 Type Systems

There has been work on using type systems for the verification of cryptographic proto-
cols [DKSH11, CCD15, CGLM17]. It is not straightforward to characterise the protocols for
which these type systems apply. A comparison with the class of depth-bounded protocols is
beyond the scope of this thesis. The methodology is very different in the sense that types
tend to match syntactic patterns of the use of cryptographic primitives that can be proven
safe. There are also advanced techniques that require heavy global side-conditions. The
latter are frequently discharged using some kind of model checking/constraint solving. We
speculate that our model checking techniques could help solving these side constraints in
the future.

Chapter 7

Conclusion

7.1 Summary

Models We presented a cryptographic variant of the π-calculus, with which security pro-
tocols can be modelled. The model is Turing-complete in general but we presented the de-
cidable fragment of depth-bounded protocols. Intuitively, they represent all processes from
which we can only reach processes using finitely many nested name restrictions. This does
not translate to finitely many name restrictions due to possibly infinite branching behaviour
when considering the syntax tree. Visually, we are restricting depth but not breadth. The
intruder model was not given directly but as axiomatisation. We also presented a specific
intruder model which was used to exemplify different concepts.

Theory We proved that the class of depth-bounded protocols is a completion-post-effective
class of well-structured transition systems [BFM18]. For this purpose, we presented a class
of expressions that represents all downward-closed (and directed) sets of configurations of
protocols. Furthermore, we have proven a characterisation for inclusion of two limits that
leads to a direct (recursive) algorithm to check inclusion of two limits. Lastly, we showed
how to compute the symbolic version of post(-), i.e. all successors of a downward-closed
set. Overall, we explained which kind of properties can be proven directly when using
our invariants. These ranged from basic properties like secrecy to known-plaintext attacks.
Moreover, the invariants could be used to prune the search space in other tools. Facts
obtained from the invariants could be of help to prove more sophisticated properties.

Practice In order to make the approach scale for our prototype, we presented several tech-
niques of which some only apply to the intruder model supporting symmetric encryption
but we hinted at requirements for generalisations. We showed how to infer invariants au-
tomatically using a widening approach that was promising when applied to our benchmark
suite. Some techniques have been developed to handle knowledge and the pattern matching
mechanism and generate all possible matchings for p̂ost. Exploiting the fact that there is a
connection between the sets to check inclusion for, i.e. p̂ost(L) ⊆ L for some representation
L, led to a simplified and sound but incomplete incorporation test that could be used as
first indicator whether the inclusion holds. With a first proof-of-concept prototype, we have
been able to verify several toy examples of protocols. Although there is still a lot of work left
to close the gap to real-world protocols but, our results are promising to keep on pursuing
this path.

89

90 CHAPTER 7. CONCLUSION

7.2 Future Work

7.2.1 More Specific Intruder Models

We only presented a model for symmetric encryption. In order to bridge the gap between
our toy examples and real-world protocols, there are plans to support more cryptographic
primitives like asymmetric encryption, hashing and signatures. Given in a similar style, most
results from Chapter 4 should still hold and hence the incorporation into the tool should be
feasible.

7.2.2 Relaxing the Intruder Axioms

The intruder axioms fail to capture some cryptographic primitives. Since XOR is an im-
portant operation in cryptographic protocols for devices with little computational power,
we consider ways to relax the axiomatisation to support XOR for instance. The following
example shows that our axioms are currently too strong to support XOR.

Example 30 (XOR fails). Let ⊗ be the XOR function with the common bit-wise definition
that we extend to vectors of bits and hence messages. The following statement holds:

a ` a⊗ c⊗ c.

However, this does violate the (Locality) axiom.

7.2.3 The Encryption Oracle

Recall that the encryption oracle is a pathological pattern that prohibits a protocol to be in
the fragment of depth-bounded protocols. To this end, we also have ideas to have symbolic
messages in combination with a lazy intruder. Intutively, the content of a message does not
matter until a principal tries to match on it. So for the reduction semantics, we could have
symbolic messages that are annotated with possible content and will only be concretised
when necessary. This could remedy the encryption oracle problem and hence lead to an
extension of the supported fragment of protocols. This is also the core reason why protocols
modelling Diffie-Hellman exponentation are not depth-bounded. Hence, these considerations
could also remedy this obstacle and lead to supporting Diffie-Hellman exponentation.

7.2.4 Comparison with Different Formalisations

In Chapter 6, we alluded that the way messages can be rewritten is different in Tamarin
and ProVerif for instance. There are two standard assumptions we intend to recapitulate.
It is not straightforward to compare our axiomatisation and systems with these properties
but it would be interesting to understand the different capabilities and hence restrictions on
applicability of our theory to their setting.

Finite Variant Property ProVerif only supports cryptographic primitives that are mod-
elled by rewrite rules→ and an equational theory E that satisfies the finite variant property
[Bla16]. Such a system (→, E) is said to have the finite variant property if for each term
t there is a finite set {t1, · · · , tn} of →-normalised instances such that every instance of t
normalises to an instance of some ti modulo E [EMS08, CLD05]. For instance, the finite
variant property was proven to hold for Abelian Groups and a theory of modular exponen-
tation while it does not hold for the theory ACUNh (Associativity, Commutativity, Unit,
Nilpotence, homomorphism) [CLD05].

7.2. FUTURE WORK 91

Subterm Convergent Rewrite Systems Tamarin supports subterm convergent rewrite
systems as well as Diffie-Hellman exponentiation, bilinear pairings, and associative and
commutative operators [SSCB14]. Even though it would be interesting to compare our
generic intruder model to all the possibilities they support. To start with, we would like to
focus on subterm convergent rewrite systems and find a relation with our axiomatisation. A
rewrite system is said to be subterm convergent if it is terminating and confluent and every
right-hand side is either a subterm of the left-hand side or a constant [SMCB12].

7.2.5 Else-Branches

Our current cryptographic calculus only supports protocols that are linear in the sense that
a participant cannot decide on the content of a received message to pursue a different path.
But intuitively, this is desirable if one considers the following scenario: assume that it is
not only important for us as participant of a protocol that the intruder does not obtain
the value of a message but neither do we want him to know whether we realised that he
has compromised a session. So given that we realise that this message cannot stem from
our intended partner of communication, we still want to send some random message (our
partner would realise that it is random) but the intruder would not realise that we know he
compromised the session. This behaviour can easily be implemented using else-branches but
it is not supported currently. Besides introducing this choice, this extension will probably
also lead to the need of having unions of ideals for invariants rather than their parallel
composition. This in turn would entail the need for new techniques to map contexts of two
different ideals so that we have something similar to the incorporation check.

7.2.6 Protocol Repair

Tools incorporating formal methods are usually used in early design phases of a protocol.
Hence, another direction which we would like to pursue considers protocol repair. Given a
procotol, one starts to verify it. But it seems to be incorrect as one finds an attack or some
invariant that contains a leak for example. Then, we want to analyse the attack/invariant
and synthesize a modification of the protocol eligible for a new invariant that does not
contain a leak/attack but is still inductive. Applying this to a range of examples could help
to spot common patterns that lead to a misuse of logic in protocol design and hence avoid
flaws in an early design phase.

List of Figures

2.1 Deduction rules for the derivability relation of Isy 19

4.1 Tree of constraints for e(a, b)e(c)d . 74

List of Tables

5.1 Experimental results . 82

93

Bibliography

[ABB+05] Alessandro Armando, David A. Basin, Yohan Boichut, Yannick Chevalier, Luca
Compagna, Jorge Cuéllar, Paul Hankes Drielsma, Pierre-Cyrille Héam, Olga
Kouchnarenko, Jacopo Mantovani, Sebastian Mödersheim, David von Oheimb,
Michaël Rusinowitch, Judson Santiago, Mathieu Turuani, Luca Viganò, and
Laurent Vigneron. The AVISPA tool for the automated validation of internet
security protocols and applications. In CAV, volume 3576 of Lecture Notes in
Computer Science, pages 281–285. Springer, 2005.

[AF01] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure com-
munication. In POPL, pages 104–115. ACM Press, 2001.

[BFM18] Michael Blondin, Alain Finkel, and Pierre McKenzie. Handling infinitely branch-
ing well-structured transition systems. Information and Computation, 258:28–
49, 2018.

[Bla01] Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog
Rules. In CSFW, pages 82–96. IEEE Computer Society, 2001.

[Bla16] Bruno Blanchet. Modeling and verifying security protocols with the applied pi
calculus and proverif. Foundations and Trends in Privacy and Security, 1(1-
2):1–135, 2016.

[CCCK16] Rohit Chadha, Vincent Cheval, Stefan Ciobâcă, and Steve Kremer. Automated
verification of equivalence properties of cryptographic protocols. ACM Transac-
tions on Computional Logic, 17(4):23:1–23:32, 2016.

[CCD13] Vincent Cheval, Véronique Cortier, and Stéphanie Delaune. Deciding
equivalence-based properties using constraint solving. Theoretical Computer Sci-
ence, 492:1–39, 2013.

[CCD15] Rémy Chrétien, Véronique Cortier, and Stéphanie Delaune. Decidability of trace
equivalence for protocols with nonces. In CSF, pages 170–184. IEEE Computer
Society, 2015.

[CCZ10] Hubert Comon-Lundh, Véronique Cortier, and Eugen Zalinescu. Deciding se-
curity properties for cryptographic protocols. application to key cycles. ACM
Transactions on Computional Logic, 11(2):9:1–9:42, 2010.

[CGLM17] Véronique Cortier, Niklas Grimm, Joseph Lallemand, and Matteo Maffei. A
type system for privacy properties. In ACM Conference on Computer and Com-
munications Security, pages 409–423. ACM, 2017.

95

96 BIBLIOGRAPHY

[CKR18] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. DEEPSEC: deciding
equivalence properties in security protocols theory and practice. In IEEE Sym-
posium on Security and Privacy, pages 529–546. IEEE Computer Society, 2018.

[CLD05] Hubert Comon-Lundh and Stéphanie Delaune. The finite variant property: How
to get rid of some algebraic properties. In RTA, volume 3467 of Lecture Notes
in Computer Science, pages 294–307. Springer, 2005.

[DKSH11] Morten Dahl, Naoki Kobayashi, Yunde Sun, and Hans Hüttel. Type-based
automated verification of authenticity in asymmetric cryptographic protocols.
In ATVA, volume 6996 of Lecture Notes in Computer Science, pages 75–89.
Springer, 2011.

[D’O15] Emanuele D’Osualdo. Verication of Message Passing Concurrent Systems. PhD
thesis, University of Oxford, 2015.

[DOT17] Emanuele D’Osualdo, Luke Ong, and Alwen Tiu. Deciding secrecy of security
protocols for an unbounded number of sessions: The case of depth-bounded
processes. In CSF, pages 464–480. IEEE Computer Society, 2017.

[DS19] Emanuele D’Osualdo and Felix M. Stutz. Decidable inductive invari-
ants for verification of cryptographic protocols with unbounded sessions.
Technical report, 2019. https://www.emanueledosualdo.com/doc/papers/

inductive-invariants-security.pdf.

[DY83] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key protocols.
IEEE Transactions on Information Theory, 29(2):198–207, 1983.

[EMM06] Santiago Escobar, Catherine A. Meadows, and José Meseguer. A rewriting-based
inference system for the NRL protocol analyzer and its meta-logical properties.
Theoretical Computer Science, 367(1-2):162–202, 2006.

[EMS08] Santiago Escobar, José Meseguer, and Ralf Sasse. Effectively checking the fi-
nite variant property. In Rewriting Techniques and Applications, pages 79–93.
Springer, 2008.

[FG09] Alain Finkel and Jean Goubault-Larrecq. Forward analysis for WSTS, part I:
completions. In STACS, volume 3 of LIPIcs, pages 433–444, 2009.

[Frä86] Roland Fräissé. Theory of Relations. Studies in Logic and the Foundations of
Mathematics. North Holland, 1986.

[Frö15] Sibylle B. Fröschle. Leakiness is decidable for well-founded protocols. In
POST’15, pages 176–195, 2015.

[GJ02] Andrew Gordon and Alan Jeffrey. Types and effects for asymmetric crypto-
graphic protocols. In CSFW, volume 12, pages 77 – 91. IEEE, 2002.

[KK14] Steve Kremer and Robert Künnemann. Automated analysis of security protocols
with global state. In Symposium on Security and Privacy. IEEE, 2014.

[KM08] Viktor Khomenko and Roland Meyer. Checking pi-calculus structural congru-
ence is graph isomorphism complete. In ACSD. IEEE, 2008.

https://www.emanueledosualdo.com/doc/papers/inductive-invariants-security.pdf
https://www.emanueledosualdo.com/doc/papers/inductive-invariants-security.pdf

BIBLIOGRAPHY 97

[Low95] Gavin Lowe. An attack on the needham-schroeder public-key authentication
protocol. Information Processing Letters, 56:131–133, 1995.

[Mcl95] James W. Grayand John Mclean. Using temporal logic to specify and verify
cryptographic protocols (progress report). In CSF, pages 108–116. IEEE, 1995.

[Mey09] Roland Meyer. Structural stationarity in the π-calculus. PhD thesis, Carl von
Ossietzky University of Oldenburg, 2009.

[MSCB13] Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. The
TAMARIN prover for the symbolic analysis of security protocols. In CAV,
volume 8044 of Lecture Notes in Computer Science, pages 696–701. Springer,
2013.

[Pau98] Lawrence C. Paulson. The inductive approach to verifying cryptographic proto-
cols. Journal of Computer Security, 6(1-2):85–128, 1998.

[RT01] Michaël Rusinowitch and Mathieu Turuani. Protocol insecurity with finite num-
ber of sessions is NP-complete. In CSFW, pages 174–187. IEEE, 2001.

[SMCB12] Benedikt Schmidt, Simon Meier, Cas Cremers, and David Basin. Automated
analysis of diffie-hellman protocols and advanced security properties. In CSF,
volume 25, pages 78–94. IEEE, 2012.

[SSCB14] Benedikt Schmidt, Ralf Sasse, Cas Cremers, and David Basin. Automated verifi-
cation of group key agreement protocols. In Symposium on Security and Privacy,
pages 179–194. IEEE Computer Society, 2014.

[TGD10] Alwen Tiu, Rajeev Goré, and Jeremy E. Dawson. A proof theoretic analysis of
intruder theories. Logical Methods in Computer Science, 6(3), 2010.

[TNH16] Alwen Tiu, Nam Nguyen, and Ross Horne. SPEC: an equivalence checker for
security protocols. In APLAS, volume 10017 of Lecture Notes in Computer
Science, pages 87–95, 2016.

[Weg05] Ingo Wegener. Complexity Theory: Exploring the Limits of Efficient Algorithms.
Springer, 2005.

[WZH10] Thomas Wies, Damien Zufferey, and Thomas A. Henzinger. Forward analy-
sis of depth-bounded processes. In FoSSaCS, volume 6014 of Lecture Notes in
Computer Science, pages 94–108. Springer, 2010.

[ZWH12] Damien Zufferey, Thomas Wies, and Thomas A. Henzinger. Ideal abstractions
for well-structured transition systems. In VMCAI, volume 7148 of Lecture Notes
in Computer Science, pages 445–460. Springer, 2012.

Appendix A

A.1 Proof that Forest Encoding Preserves vkn

Lemma 5. Assume Q1, Q2 ∈ SYs with nestν(Q1) ≤ k and nestν(Q2) ≤ k. Then FJQ1Kk vF
FJQ2Kk implies Q1 vkn Q2.

Proof from [DS19]. First we strengthen the statement: we can prove that if FJQ1Kk vF
FJQ2Kk then sf(Q1) = ν~y.R and sf(Q2) = ν~y.ν~z.(R ‖ R′), which clearly implies Q1 vkn Q2.

We proceed by induction on k. The base case is a special case of the induction step, so
let us consider the latter first. Assume nestν(Q1),nestν(Q2) ≤ k+ 1 and ϕ1 = FJQ1Kk+1 vF
FJQ2Kk+1 = ϕ2, and let B = supp(ϕ1) ∩ BY (s) and C = supp(ϕ1) \ B (note that C ⊆
FY ∪{xk+1}
s,k). Then, by definition, there is an injective function f : supp(ϕ1) → supp(ϕ2)

such that for each P ∈ B, P = f(P) and ϕ1(P) ≤ ϕ2(P); moreover, for each ϕ ∈
C, ϕ vF f(ϕ) and ϕ1(ϕ) ≤ ϕ2(ϕ). By definition of FJ-K we know that each ϕ ∈ C
is the forest encoding FJP1Kk for some subterm (α-equivalent to) νxk+1.Pϕ of Q1 with
nestν(Pϕ) ≤ nestν(Q1)− 1 ≤ k. Similarly for Q2 we have f(ϕ) = FJPf(ϕ)Kk for some sub-
term νxk+1.Pf(ϕ) with nestν(Pf(ϕ)) ≤ nestν(Q2) − 1 ≤ k. We can therefore apply the
induction hypothesis and get ϕ vF f(ϕ) implies that sf(Pϕ) = ν~yϕ.Rϕ and sf(Pf(ϕ)) =
ν~yϕ.ν~zϕ.(Rϕ ‖ R′ϕ). As a consequence of this and of ϕ1(ϕ) ≤ ϕ2(ϕ), we have

Q1 ≡kn

(∏
P∈BP

ϕ1(P) ‖
∏
ϕ∈C(νxk+1.ν~yϕ.Rϕ)ϕ1(ϕ)

)
Q2 ≡kn

(∏
P∈BP

ϕ1(P) ‖
∏
ϕ∈C(νxk+1.ν~yϕ.ν~zϕ.(Rϕ ‖ R′ϕ))ϕ1(ϕ) ‖ R′

)
which clearly entails the claim, by application of α-renaming and scope extrusion to get the
two standard forms. In the base case, C = ∅ from which the claim follows straightforwardly.

A.2 Properties of Knowledge

Lemma 15. Let Γ1,Γ2,Γ be sets of messages such that Γ1 ≤kn Γ2. Then, Γ,Γ1 ≤kn Γ,Γ2.

Proof. Let Γ1 = {M1, . . . ,Mn}. We have to show that for all N , if Γ,Γ1 ` N then Γ2 ` N .
We apply (Cut) n times obtaining

Γ,Γ2 ` M1

Γ,Γ2,M1 ` M2

. .
.

Γ,Γ2, (Γ1 \Mn) ` Mn Γ,Γ1,Γ2 ` N

...

Cut

Γ,Γ2,M1,M2 ` N
Cut

Γ,Γ2,M1 ` N
Cut

Γ,Γ2 ` N
Cut

99

100 APPENDIX A.

From Γ1 ≤kn Γ2 we have ∀i ≤ n : Γ2 ` Mi, which implies, by (Mon), all the left-most
premises. By (Mon), from Γ,Γ1 ` N we know Γ,Γ1,Γ2 ` N , which completes the derivation
showing Γ,Γ2 ` N .

Corollary 1. Let ∆1,∆2,Γ1,Γ2 be sets of messages s.t. ∆1 ≤kn ∆2 and Γ1 ≤kn Γ2. Then,
∆1,Γ1 ≤kn ∆2,Γ2.

Proof. Two applications of Lemma 15 suffice: Γ1,∆1 ≤kn Γ2,∆1 ≤kn Γ2,∆2.

A.3 Properties of vkn

Corollary 2. Let Γ be a set of messages, P1, P2 ∈ P two processes for which sf(Pi) =
ν~xi.(〈Γi〉 ‖ Qi) for i ∈ {1, 2} and P1 vkn P2. Then, 〈Γ〉 ‖ P1 vkn 〈Γ〉 ‖ P2.

Proof. Direct consequence of Lemma 15.

Lemma 16. Let P1, P2 be two processes and n ∈ N. If P1 vkn P2, then Pn1 vkn P
n
2 .

Proof. For every single instance of both processes use the indicated matching for names and
process calls. Considering knowledge, using Lemma 1 n-times is sufficient.

Lemma 17. Let L′ ∈ L a limit s.t. L′ = Lω for some L ∈ L. Then, (dL′en)m vkn dL′em∗n
holds for every m,n ∈ N.

Proof.
(dL′en)m = (dLωen)m = ((dLen)n)m = (dLen)m∗n

dL′em∗n = dLωem∗n = (dLem∗n)m∗n

We know that dLem vkn dLem∗n and the claim follows by Lemma 16.

A.4 Solving the Example in the Introduction

We do not intend to leave the solution to the motivating example, in which the goal was
to send a parcel via an untrusted post service, completely open. Even though we will not
give a detailed answer, we want to argue about properties of an appropriate protocol to
establish a secure communication with our friend in Chapter 1. A first possibility is the use
of a key establishment protocol for which usually a trusted server is assumed with which
each participant has a secure connection. We encountered such kinds of protocols, e.g. the
Otway-Rees protocol. Modelling this kind of cryptographic primitives as keys and locks
is quite straightforward if the server can generate fresh keys and locks and pass them to
the participants. There are also methods to exchange keys without such a trusted server,
e.g. the Diffie-Hellman key exchange protocol. Even though this cannot be easily adopted to
the setting of physical locks and keys, it is frequently adopted to internet communication.

	Introduction
	Motivation
	The Setting
	Our Approach and Security Properties
	Related Work
	Contributions
	Comparison with Related Work
	Outline
	Attribution

	Formal Models
	Intruder Models
	A Calculus for Cryptographic Protocols
	Depth-Bounded Protocols

	Ideal Completions for Security Protocols
	Downward-closed Invariants and Security Properties
	Depth-Bounded Processes are Well-Quasi-Ordered
	Limits and Ideal Decompositions
	Decidability of Inclusion
	Computing Post-Hat
	Invariant for Example [ex:running]2

	Algorithmic Aspects
	Incorporation Check
	Irreducible Knowledge
	Pattern Matching
	Finding Candidates for Invariants
	Encoding for SMT-Solver
	Tight Form

	Evaluation
	Benchmarks
	Otway-Rees Protocol

	Related Work
	Invariants
	Bounded Number of Sessions
	Unbounded Number of Sessions

	Conclusion
	Summary
	Future Work

	List of Figures
	List of Tables
	Bibliography
	
	Proof that Forest Encoding Preserves kn
	Properties of Knowledge
	Properties of kn
	Solving the Example in the Introduction

